On domestication and Sue Burke's 'Semiosis'

On domestication and Sue Burke's 'Semiosis'

In Sue Burke’s Semiosis, humans reach an alien world with intelligent plants.

The settlers find themselves afflicted by inexplicable infertility.  Most women are able to bear children, but many men are sterile.  The settlement develops a culture in which women continue to marry based on the vagaries of affection, but from time to time, a woman will kiss her spouse goodnight before venturing off for an evening’s energetic tussle with a fertile man.

The human settlement has established itself at the base of a single plant.  This plant has ocular patches and can recognize individual humans.  The plant provides fruit that seems exquisitely tailored to each person’s nutritional needs.  In return, the humans carefully tend the plant – irrigating its groves, clearing away competitors, and fertilizing new growth.

The plant manipulates its human caretakers.  By tweaking the composition of their food, it controls the humans’ health.  Selectively instilling infertility or fecundity allows the plant to direct human evolution.  Among the fourth generation of human settlers, more than half of all children were sired by a placid man who was so contemplative and empathetic that he learned to communicate with the host plant.

The plant domesticated its human caretakers.

#

Here on Earth, flowering plants also co-evolved with animals. 

Plants could very well consider themselves the dominant species in these relationships – after all, plants use animals to do their bidding.  Plants offer tiny drips of nectar to conscript insects to fertilize their flowers.  Plants offer small fruits to conscript mammals to spread their seeds.  And plants far outlive their servants – thousands of generations of animals might flit by during the lifetime of a single tree.

Some plants directed the evolution of their helpers so well that the species are inextricably linked – some insects feed on only a single species of plant, and the plant might rely on this single species of insect to fertilize its flowers.  If either the plant or insect disappeared, the other would go extinct.

#

In Semiosis, the alien plant changes its attitude toward humans over the generations.  At first it was concerned only with control and utility.  The motile beasts were a tool that it could manipulate with pleasing colors and psychoactive fruits. 

Eventually, though, the plant develops an affection for its human wards.  Of course, these humans are markedly different from the people who first arrived on this planet.

The plant’s affections changed in the same way that our own attitude toward wolves softened as we manipulated the species.  Many humans are still reflexively afraid of wolves.  We tell children stories about Little Red Riding Hood; when I’m walking in the woods, sometimes I find myself humming the refrain from “Peter and the Wolf.”  The ecosystem of Yellowstone Park was devastated when we murdered all the wolves during the 1920s; willow and beaver populations have rebounded since wolves were reintroduced in the 1990s (most likely because wolves mitigate the damage done by uncontrolled elk populations); now that Yellowstone’s wolf population isn’t critically endangered, states surrounding the park are letting human hunters shoot wolves again.

And yet, we giggle at the antics of domesticated dogs.

#

Among wild animals, the most aggressive individuals are often the most fecund.  Wolves who can fight for and hold the alpha rank get to breed; the others don’t.

During domestication, breeding patterns are altered.  To create dogs, we selected for the most docile individuals.  If you could expand your temporal horizons wide enough, all populations might seem as mutable as clay.  A species flows through time, ever changing, evolving such that the traits that best lead to viable children become more common.  In the wild, a speedy rabbit might have the most children, because it might survive for more breeding seasons than others.  On a farm, the most docile rabbit might have the most children, because its human handlers might give a docile male more time among the females.

Domestication seems to change animals in stereotyped ways.  Zoologist Dmitry Belyayev designed an experiment with wild foxes.  Only the foxes that were least fearful of humans were allowed to breed; over the course of some dozen generations, this single criterion resulted in a large number of behavioral and morphological changes.  The domesticated foxes produce less adrenaline; they have narrower faces; they have floppier ears.  This suite of traits seems to be present in almost all domesticated species.

Cats still have pointy ears.  As it happens, cats are barely domesticated.

#

Humans seem to be self-domesticated. A few hundred thousand years ago, our ancestors lived in very small groups, maybe one or two dozen individuals.  After humans diverged from the last common ancestor that we shared with bonobos and chimpanzees, most human species still lived in groups of about this size.  Neanderthals may have lived in groups as small as six.

Eventually, Homo sapiens drove all other human species to extinction.  A major competitive advantage was that Homo sapiens lived and worked in groups as large as a hundred.  With so many people cooperating, they could hunt much more efficiently.  A violent conflict between six Neanderthals and a clan of a hundred Homo sapiens would not go well for the Neanderthals.

In the modern world, the population densities of urban areas force humans to be even more docile than our recent ancestors.  But even with our whole evolutionary history promoting cooperation, many people struggle to be calm and kind within the crowded confines of a city.  Some can do it; others feel too aggressive.

When a person’s disposition is ill-suited to the strange environment we’ve made, we punish.  We shunt people to high school detention, or jail.

In Semiosis, the plant overlord reacts by limiting fertility.

#

As in Richard Powers’s Overstory, the perspective of a long-lived, immobile plant would be markedly different from ours.  Human generations flit by as a plant continues to grow.

The bamboo forest/grove in Arashiyama, Kyoto, Japan. Photograph by Daniel Walker on Flickr.

Domestication takes generations – in Belyayev’s fox experiment, twenty generations passed before a third of the population was tame – but an intelligent plant could wait.  By selecting which individuals get to pass on their genes, huge changes can be made.  From wolves, we created Great Danes and Chihuahuas.  From a scruffy grass we evoked buxom ears of corn, as though by glacial magic.

#

In particularly dark eras of our past, humans have tried to direct our own evolution.  Social Darwinists in the United States forcibly sterilized people whom they disliked.  Politicians in Nazi Germany copied the legal language of the United States when they sought philosophical justification for the murder of entire religious and ethnic groups.

By putting the motivation inside the mind of a plant, Burke is able to explore the ramifications of directed human evolution without alluding to these evil regimes.

#

In jail, somebody said to me, “I heard that humans were evolving to have really long fingers, so we could type real fast, and big-headed hairless bodies.”

“Yeah, yeah,” somebody added, “I saw this thing on the Discovery channel, it was like, you know the way they show all those aliens on the X-Files?  That humans were gonna be like that, like the aliens were just us coming back to visit from the future.”

Illustration of “future humans” by Futurilla on Flickr.

I murmured in disagreement. 

“Humans are definitely still evolving.  But evolution doesn’t have a goal.  It just selects for whichever properties of a creature are best for making copies of itself.”

“With modern medical care, we don’t die so easily.  So the main driver of evolution is the number of kids you have.  If you have more kids than I do, then you’re more fit than I am.  Future humans will look more like you than me.”

“There’s not much data yet, because evolution happens over such a long time, but the one study I’ve seen recently showed that humans in the United States are evolving to be shorter.”

“But it’s not like we’re getting shorter so that we’ll fit better inside spaceships.  It’s just that shorter people have been having more kids.”

#

Plants have directed the evolution of bees.  Of bats – there’s a bat species that fertilizes agave, another that fertilizes mangoes, and so on. 

Photo by Marlon Machado on Flickr.

Plants directed our evolution, too.  We owe our color vision to our history as fruit eaters – we needed to see the difference between ripe reds and green buds.

And, like all populations, we are changing.  Evolution isn’t done.

What might a clever plant want us to become?

On education rankings.

On education rankings.

I recently placed a copy of How to Lie with Statistics in a little free library near campus.  Not because I want people to be more deceitful – if you don’t understand how to trick others, then you yourself will be easy game.  Numbers sound like facts.  They can be used for malicious ends.

Consider medical ratings.  These are ostensibly beneficial – prospective patients get to learn how well-trained their doctors are! 

Saurabh Jha wrote an excellent essay explaining why these rankings are misleading, “When a Bad Surgeon Is the One You Want.”  In brief, doctors who take easy cases will improve their ratings – their patients are more likely to have good outcomes.  When doctors are assessed on their patients’ outcomes, then the doctors who take hard cases will appear to be incompetent.  Even if they are much better at their craft than others.

The same phenomenon holds in teaching. 

In our school district, teachers receive a salary bonus if they are reviewed as “highly effective.”  My spouse has never received this bonus.  She was recognized as being the best early-career biology teacher in the country; for multiple years, one of the half-dozen best teachers in our state; worth inviting to address graduates at Stanford’s School of Education.  But within our school district, she is considered a mediocre teacher.

The reason?  Teachers are evaluated based on their students’ performance, and my spouse insists that half her teaching schedule be devoted to high-need students.  These students don’t score as well on tests, which is considered evidence that anyone who works with them is a low-quality teacher.

This week, the Indiana Department of Education released federal evaluations of local schools. 

The elementary school located amidst our town’s most expensive houses, at which the lowest percentage of students receive free or reduced-price lunch, was rated as “exceeding expectations.”  

The elementary schools that serve our town’s most disadvantaged students – one of which holds bilingual classes in English and American Sign Language to support deaf children, and has 86% of students receiving free or reduced-priced lunch – were rated as not meeting expectations.

My spouse and I are sending our own children to one of the schools that was rated as not meeting expectations.  We know a fair bit about education – among other things, my spouse is the editor-in-chief of a national journal of teacher writing.  I’ve observed classrooms in this low-rated school, and they are excellent.

But teacher morale is low, because the teachers are continually evaluated as being sub-par, despite the fact that they have chosen to work harder than others.  Our school district is mandating that teachers in the low-rated schools waste time on unfulfilling test-prep regimes, even though these practices are known to further alienate under-resourced students.

Our nation’s school administrators ought to read How to Lie with Statistics, it seems.  They’ve looked at a set of numbers and allowed themselves to be misled.  Which bodes ill for the learners in their care.

On explaining religion to my child, part two.

On explaining religion to my child, part two.

When we attended my grandmother’s memorial service, my children sat in the front pew.  They flanked my mother and mostly succeeded in sitting quietly, despite having just ridden for two hours in the car.  We were proud.

The service was held inside the Presbyterian church where my grandmother worked for twenty-five years.  Large stained glass windows poured colorful light into the room. The walls were adorned with Christmas decorations.

“It’s so beautiful,” said our five-year-old.

The minister was wearing a white robe with gold trim.  Before he began to describe my grandmother’s complicated hair and meticulous proofreading, he told stories about Jesus.  “We must welcome the Lord into our heart,” he said from the pulpit. 

“Myrtle has joined Him there,” he said.

Our younger child – three-and-a-half – turned and asked, quite loudly and clear as a bell, “Which sky ghost do these people believe in?”

#

Driving home from the ceremony, the song “Heaven’s Only Wishful” by MorMor came on the radio. 

“Heaven is the name of the sky ghost kingdom in Christianity.  That religion isn’t always kind toward women – there were thirteen apostles, but one was a woman and the people who wrote the Bible left her out – so there isn’t a queen in the stories about Heaven.  There’s a prince, the kid, Jesus, and there’s a king, the father, usually just called God, or Yahweh, and there’s a grandfather figure, the Holy Ghost.”

“And maybe you’ve seen in books … like in Mr. Putter and Tabby, whenever Mr. Putter really likes something he says it’s ‘heavenly.’  Which means the cake or whatever is so good that you could serve it in the sky ghost kingdom.  Even Jesus would think it was delicious.”

“His grandfather is a ghost?” exclaimed our youngest. 

She understands that there’s a difference between “sky ghost,” which is the phrase I began using to describe divinities and myths, and “ghost,” the spooky creatures that haunt Halloween.  But “Holy Ghost” sounds more like the second kind – a spook covered by a moth-eaten sheet.

“When your father said ‘grandfather figure,’ maybe he misspoke,” my spouse said.  “When people feel moved, when they see or hear something really beautiful, sometimes they say they’ve been visited by the Holy Ghost.”

I clarified.  “But that’s how people think about their grandparents – and great-grandparents, and great-greats – in a lot of religions that include ancestor worship.  Do you remember in Moana when her grandmother comes to visit her?”

Of course they remembered.  Our kids love Moana.  When they’re sick, they listen to the Moana soundtrack.  Twice a year – to celebrate special events like the winter solstice or the end of school – they watch the movie on my tiny laptop computer screen. 

“Her grandmother came and sang to her.  But her grandmother had died.  She wasn’t really there.  They drew it that way because they wanted to show you how it felt.  It was as though her grandmother had come to her, and that gave her the courage to do a really hard thing, to take back the heart all by herself.”

“Take it to Te Kā, the lava monster!”

“Yes, the lava monster.  But the difference is that in cultures like Moana’s – and Daoism in China, some Native American religions here – the ghost or spirit who visits is your ancestor.  Someone personal.  Family.  The story in Christianity is that everyone shares the same dead grandfather figure, the Holy Ghost.”

“I would want you to visit me, Mama,” said our older kid.  Which I believe was meant sweetly, like I want you instead of the Holy Ghost, and not I want you instead of my pedantic parent.

“Yeah,” agreed our younger.  “I’d want Mama.  And Te Kā!”

Ah, yes.  From lava monsters do we draw our strength.  I’ve clearly taught my children well.

.

Featured image: Stained glass in Saint Nicholas Kirk in Aberdeen, Scotland. Photo by denisbin on Flickr.

On birds watching.

On birds watching.

In jail recently, we were talking about birds.

“Yeah, my grandfather had something like a thousand chickens, had them running all through the yard,” somebody said.  “And there was this one chicken, he was a mean one.  I was kind of afraid of it, strutting around like he owned the place.  So my grandfather, he told me to kick it.”

“Well, I did, but that only made things worse.  I didn’t make him scared, I just made that chicken hate me.  So after that, anytime we went to visit my grandfather’s place, that chicken would be there, waiting for me.”

“My parents, my brothers and sisters, everybody would get out of the car, but the chicken wouldn’t bother them.  He’d be sitting there, staring, just waiting for me.  And when I finally got out I had to run, every time, sprinting to my grandfather’s front door before that chicken got me.”

“They live a long time, too!  I had, like, five or six years of that!  And still to this day, anytime my mom sees a video or a picture of somebody running from a chicken on Facebook, she’ll tag me in it.  Like, ha ha ha, remember that?”

#

“Maybe you didn’t kick him hard enough,” somebody suggested.  “Cause we used to have chickens, and I had to go into the coop sometimes, and the roof of it was real low to the ground, so I had to crouch in there like this, and one chicken would always strut up to me like it was going to start something.”

“Well, it did that every time for a few months, till one day it got in my face and I just went BOOM, and I wrestled that little fucker to the ground.  And that chicken never messed with me again.”

#

Birds can recognize individual humans. 

Biologist John Marzluff noticed that crows became wary of particular researchers after the crows had been captured and tagged.  In an experiment where researchers captured a half dozen crows while wearing a caveman mask, they found that the whole flock learned to respond to that mask as a threat.  Several years later, even crows who hadn’t seen the caveman’s initial misbehavior would shriek a warning when they saw that mask.  They’d been trained by their flockmates.

The caveman mask is on the left. On the right: a control mask.

#

Between their intelligence and acute eyesight, birds can serve as passable oncologists.  Pigeons were trained with a set of slides from biopsies – a pigeon had to inspect each image and then choose a button for “cancer” or “not cancer”.  If the pigeon chose correctly, the computer would dispense a pellet of food.

(Human medical students are often mistreated during their training, forced to work grueling hours with few breaks.  The pigeon trainees were also mistreated – to ensure that they valued each food pellet, the pigeons were starved during the experiment.  I’m 6 feet tall and about 150 pounds, but if I were participating in this study, I’d be kept at 127 pounds – eighty-five percent of my “free feeding” weight.)

Pigeons learned to diagnose biopsies with 80% accuracy.  A team of eight pigeons voting together could diagnose biopsies with 99% accuracy

The team of pigeons was just as good as a human oncologist, and far better than computerized image analysis.

You can buy 50 pounds of pigeon pellets for under $10.  That’d give you enough rewards for a flock of half-starved pigeons to diagnose thousands of patients.

#

We used to think that an entire class of vertebrates had gone extinct – the dinosaurs.  But we now know that birds are dinosaurs. 

Several species of dinosaurs/birds are gone – millions of years have passed since tyrannosaurs or velociraptors roamed the earth.  But their lineage has continued.

When I was growing up, people often remarked that dinosaurs were clearly dim-witted creatures because they have such small cranial cavities.  There was not much room for brains in their skulls! 

But contemporary dinosaurs/birds have small brains, too, and many are extremely intelligent.  They can chase kids who’ve crossed them.  They can diagnose cancer.  They can make tools, solve logic puzzles, and guess what other animals are thinking.

All with minuscule brains!

When biologist Suzana Herculano-Houzel investigated the brains of various species, she found that the number of neurons in a brain typically correlates with cognitive capacity.  More neurons makes for a smarter critter!

The physical size of a brain doesn’t tell you how many neurons will be in a brain, though.  A bigger brain might just have bigger neurons

As it happens, birds’ brains are constructed better than our own.  Crows and parrots pack neurons into a brain more densely than we do, like the difference between old IBM mainframes and modern telephones.  Pigeon brains are better than ours at parallel computing, like the difference between a hypothetical quantum computer and your current laptop.

We can outsmart crows, parrots, and pigeons, but only because our raw neuron counts are so high that we’ve not been surpassed by their superior designs.

We don’t know when dinosaurs/birds evolved their high neuron densities – well-designed brains might be recent innovations, or they might be millions of years old.  Ancient dinosaurs may have been far more intelligent than we thought.

Yes, they still went extinct, but you can’t blame them for succumbing to climate change.  And it’s not like they caused the climate change that killed them.

Future archaeologists might judge humans to be more foolish than any stegosaurus.

#

We humans have huge numbers of neurons in our cerebral cortex.  We are blisteringly clever.  We’ve made all variety of tools, languages, and complex social structures.  Yes, crows also have tools, language, and complex social structures, but in each category, human achievements are even more complex.

A crow tool is typically a hooked piece of stick.  We built telephones.

Well, humans collectively built telephones.  I couldn’t sit down and build one from scratch.  If I were to make a tool while out hiking, it’d probably be a hooked piece of stick.

Still, our best achievements are pretty incredible. 

But we’ve also brought our species to the brink of extinction.  Through overpopulation and excessive exploitation of the planet’s trapped resources, we’re making our world less habitable. 

Tyrannosaurus ruled this planet for a few million years.  Humans have been a dominant species for only a hundred thousand years – a few percent of T-Rex’s reign.  With the current pace of climate change, scientists soberly discuss the possibility that we’ll reap apocalypse within a hundred more years.

Measured by reign, we might prove 20-fold less successful than those giant birds.

On the study of naked mole-rats.

On the study of naked mole-rats.

This is a riff on an essay from several years ago.

In 1974, evolutionary biologist Richard Alexander gave a lecture describing the conditions that might spawn eusocial vertebrates. 

Alexander was a bug guy – “eusocial” refers to extremely cooperative animals like bees, ants, and termites. Individuals sacrifice themselves for others.  Non-breeders help with childcare.  The colony seems more intelligent than its members.

Alexander proposed that a eusocial mammal could evolve if the animals were small compared to their food sources, and if they lived in underground burrows that could be expanded easily and defended by a small percentage of the colony.

After the lecture, an audience member mentioned that this “hypothetical eusocial mammal” sounded a lot like the naked mole-rat.  Alexander was introduced to Jennifer Jarvis, who had studied individual naked mole-rats but not their social lives.  Alexander and Jarvis collaborated to write The Biology of the Naked Mole-Rat.

Eliot Weinberger condensed this 500-page textbook into his 3-page essay, “Naked Mole-Rats.”

#

Like us, naked mole-rats are both good and bad.  They are cooperative.  They are affectionate.  They are always touching.  When they meet strangers, they fight to the death.  When a breeding female dies, many other females regain fertility and the colony erupts into civil war.

Weinberger wrote that naked mole-rats “are continually cruel in small ways.”  But they are outdone by naked apes. 

#

For a research paper published in 2008, Thomas Park and colleagues found that being pinched by tweezers causes naked mole-rats pain, but injection with caustic acid does not.

“We tested naked mole-rats in standard behavioral models of acute pain including tests for mechanical, thermal, and chemical pain.  We found that after noxious pinch or heat, the mole-rats responded similarly to mice.”

“In contrast to the results using mechanical and thermal stimuli, there was a striking difference in responses to strong chemical irritants.  Two chemicals were used – capsaicin from hot peppers and hydrochloric acid – which normally evoke very intense pain in humans and other animals.  Injection of either rapidly evoked intense licking and guarding behaviors in mice.”

“In contrast, naked mole-rats showed virtually no response.”

#

Perhaps you worry that acid-resistant naked mole-rats could conquer the world.  Fear not.  A form of kryptonite exists.  Injection of an 11-amino-acid signaling peptide allows acid to hurt naked mole-rats just as much as it hurts mice.  Or us.

Half a dozen animals were subjected to each treatment.

#

Naked mole-rats don’t die from cancer. 

They should.  Their cells, like ours, are copied from copies of copies.  Errors compound.

Some errors are particularly deadly.  Our cells are supposed to stop growing when they touch.  They are supposed to commit suicide when old.  But the instructions telling a cell when and how to kill itself can be lost, just like any other information.

This is cancer.

In cancer, a single cell proliferates at the expense of others.  A cancer cell claims more than its fair share of space.  It commandeers nutrients.  This cell, and its progeny, and its progeny’s progeny, will flourish. 

Then the scaffolding creature dies.  Then the cancer cells die, too. 

But every cell that isn’t an egg or sperm is terminal anyway.  In the colony of our body, most cells are non-breeding members.  From a cancer cell’s perspective, it has nothing to lose.

#

We develop cancer often.  With each passing day, we produce about 100 billion new cells.  Each time we produce a new cell, all 3 billion letters of our genome must be copied. 

The enzymes that copy our genome make one mistake every billion letters.  Each cell division: three new mutations.  Each day: three hundred billion new mutations.

Some mutants are trouble. 

#

Our bodies kill cancer.  Your immune system – the same mess of mucous, inflammation, and goo that goes haywire during the flu – seeks and destroys renegade cells.  Your body is a fascist enterprise; white blood cells, its militarized police.

Chemotherapy does not kill cancer.  Chemotherapy means flooding the body with poisons that stop all cells from reproducing.  With luck, if the spread of cancer is slowed, your immune system can kill it before it kills you.

In naked mole-rats, cancers always grow as slowly as if the rodents were receiving chemo, allowing their immune systems to squelch cancers at a leisurely pace.  Their cancers are slowed by a heavy sugar called “hyaluronan,” which is packed so tightly into the space between cells that there is no room to grow.

In 2013, biologist Xiao Tian and colleagues wrote that “naked mole-rats may have evolved a higher concentration of hyaluronan to provide the skin elasticity needed for life in underground tunnels.  This trait may have then been co-opted to provide cancer resistance and longevity.”

They became impervious to cancer almost by mistake.

#

The record lifespan for a naked mole-rat in captivity is 28 years, 4 months.  The record-holder was nicknamed James Bond.  He was senior consort to his queen and continued rutting – and siring pups – up until the day he died.

Bond was dissected.  His cells showed extensive oxidative damage in their lipids, proteins, and DNA.  Bond should have been hobbled by age.  But time did not slow him down.

Science writer David Stipp described him as “a little buck-toothed burrower who ages like a demigod.”

#

Humans typically cease breeding long before we die.  From an evolutionary perspective, as soon as we stop having children, our fitness drops to zero.

And yet, we have long lifespans.  The dominant theory is an offshoot of “the grandmother hypothesis” – because we often care for grandchildren, there may have been evolutionary pressure to maintain good health until our grandchildren also reach reproductive age. 

With twenty-year generations, there’d be an incentive to survive until our sixties.

After that, perhaps our ancestors were no longer helpful.  And so we’ve inherited a propensity to decay.  Expensive medical interventions can preserve us longer, but once we pass our natural lifespans, brains and bodies weaken.

#

When scientists starve animals in the lab, it’s called “caloric restriction.”  This protocol extends lifespan in a wide variety of species.  Monkeys, mice, flies, and worms.  Ten-fold increases in lifespan have been observed.

Caloric restriction should extend the lives of humans, too.

There are unpleasant side effects.  Caloric-restricted mice spend their time staring at empty food bowls.  They are listless: barely moving, barely sleeping.  They live longer, but worse – and if they are fed slightly less, they die of malnutrition.

Frequent starvation in the wild may have caused naked mole-rats to evolve their prodigious longevity.

Naked mole-rats expand their colonies outward, searching for edible roots.  When they find a good root, they gnaw it carefully, attempting to keep the plant alive as long as possible.  But a colony of naked mole-rats eats faster than any plant can grow.  When the plant dies, the colony plunges into famine. 

#

Most eusocial animals carefully ventilate their homes.  Termites build giant pylons in the desert.  Although temperatures outside careen from 35 degrees at night to over 100 during the day, the interior of the mound remains a constant 87 degrees.  And the termites do not asphyxiate.  Their exhalations are swept away by circulating air.

Naked mole-rats burrow with less care.  They sleep in piles, hundreds of bodies lumped together underground.  Those near the center soon run out of oxygen.

We would die.

Most animals, deprived of oxygen, can’t fuel their brains.  Thoughts are expensive.  Even at rest, our brains demand a constant influx of energy or else the neurons “depolarize” – we fall apart.

Since the death penalty was reintroduced in the United States in 1976, we have killed eleven prisoners in gas chambers.  During the 1983 execution of Jimmy Lee Gray in Mississippi, officials cleared the observation room after eight minutes.  Gray was still alive, gasping for breath.  His attorney said, “Jimmy Lee Gray died banging his head against a steel pole in the gas chamber while reporters counted his moans.”

Gas chambers are pumped full of cyanide gas, carbon monoxide, or carbon dioxide.  Carbon dioxide is cheapest. 

#

With each breath, we inhale oxygen, burn sugar, and exhale carbon dioxide.  When we drive, our cars intake oxygen, burn gasoline, and exhaust carbon dioxide. 

In small amounts, carbon dioxide is beneficial.  Carbon dioxide allows plants to grow.  But when you put too much inside a chamber, somebody dies.  Put too much in the air worldwide and we all die.

The planet Venus was habitable, once.  Humans could have lived there.  Venus had a deep ocean and mild weather.

Through some fluke, Venus experienced a temporary bump in the amount of carbon dioxide in the air.  Carbon dioxide traps heat, which caused water to evaporate.  Clouds formed, which trapped more heat.  The cycle continued. 

Venus is now a fiery inferno.  The ground is bare rock.  Sulfuric acid rains from the sky.

#

Lab mice die in gas chambers.  Sometimes one mouse is set inside the plexiglass box; sometimes several mice inside a Chinese-food takeout container are gassed together.  A valve for carbon dioxide is opened; the mice lose consciousness; they shit; they die.

A naked mole-rat would live.  Unless a very determined researcher left the gas flowing for half an hour.  Or so found Thomas Park and colleagues – the same team that discovered that naked mole-rats dislike being pinched.  As they reported in 2017:

Human brains drink sugar.  We are like hummingbirds that way.  And our brains are very fussy eaters.  We are fueled exclusively by glucose.

Naked mole-rats are less particular.  Their minds slurp fructose to keep from dying.

#

Naked mole-rats are the most cooperative of mammals.  They are resistant to cancer.  Unperturbed by acid.  They age with the libidinous gracelessness of Hugh Hefner. 

They are able to withstand the horrors of a gas chamber.

And yet, for all these talents, naked mole-rats are easily tormented by human scientists.

.

.

.

Featured image from Wikimedia Commons.

On the sacred.

On the sacred.

In jail, we were discussing isolation when somebody mentioned the plummeting price of marijuana.  We’d read a quote from quantum physicist Richard Feynman about sensory deprivation:

I went into isolation tanks and got many hours of hallucinations, so I know something about that.  Ordinarily it would take me about fifteen minutes to get a hallucination going, but on a few occasions, when I smoked some marijuana beforehand, it came very quickly.  But fifteen minutes was fast enough for me.

The guys asked me when these experiments had happened. 

“Late 1950s, early 60s,” I told them.

“Man, marijuana must have been so expensive then!  Just in the last few years, the prices fell so hard.  Like now you can get five pounds for fifteen hundred bucks.”

I was shaking my head.  “Five pounds?  The most I ever bought at once was half an ounce, back when I lived in California.  Even then, I think I paid two hundred for it.”

“Two hundred dollars?  You got ripped off!”

I laughed.  “Yeah, but I probably deserved it.”

“Let me tell you,” the guy sitting next to me said, “next time you see me on the streets, I could hook you up with some good stuff.”

I demurred.  “I haven’t smoked in so long, you could probably sell me a baggie of oregano, I’d hardly know the difference.”

The guy’s face fell.  The room grew silent.  Until somebody shouted, “Oregano?  He just called you a major asshole!”

I felt pretty bad.  I’d really hurt his feelings.

#

As it happens, this guy – the one whose feelings I’d hurt – is in jail for robbing me.

Unsuccessfully.  Possibly by accident.  But still.

There was a dropped wallet.  His attempt to use my family’s Health Savings Account debit card to buy two sandwiches and a pack of cigarettes.  Some yelling at whomever was working the counter at Village Pantry when the card wouldn’t go through.  Then an arrest.

That whole episode transpired almost three years ago.  But I didn’t learn who it was until last month, when the prosecutor sent a letter to us asking for a victim statement.

The guy has been in my class several times before.  I like him – he reminds me of an old friend of mine, enthusiastically participates in our classes, and always bikes over to say “hi” when I see him on the street.  Apparently they’d put him on probation after the debit card incident, but now, after another slip up, they’re trying to slap him with all his backup time.

#

Everybody in class laughed when I told him he was there for robbing me.  He said he hadn’t known whose card it was.  I shrugged and asked him to write an apology to my spouse.  Then we sent letters to his prosecutor and the judge, asking for leniency.

Money isn’t sacred.

Photo by Todd Huffman on Flickr.

I’ve heard guys tell stories about taking money from each other.  The story might end with somebody getting punched in the face, but there aren’t hard feelings.  Money comes and money goes.  It’s just paper.  Or less: numbers inside a machine.

That HSA account only has money in it through a fiction agreed upon by my family, the pharmacy, and the bank.  We scan a card and the value of our account goes down.  Nothing physically happens.

Financial trickery seems so hollow compared to sandwiches or cigarettes.

#

But passing off drugs as something they’re not?  That violates something sacred.  Inside the jail, people’s possessions are stripped away – all they have left are their reputations.

You don’t have to be honest all the time.  You can embellish stories about cops you’ve evaded, people you’ve slept with, money that’s slipped through your fingers.  That’s all harmless talk.  Passing the time, shooting the shit.

If you’re there for hitting a girlfriend, you can say you failed a drug test.  Or admit you’re in for domestic, but say that you didn’t do it.  For the sake of your future, maybe it’s best you tell an alternate story often to believe it.

When you’re talking about drugs, though, people can get hurt.  If you say it’s dope, it’d better be dope.  Not pot dipped in embalming fluid.  Not heroin spiked with fentanyl.

I won’t tell another joke about oregano.

Indeed, the guy who’s in jail for trying to use our HSA card isn’t too upset about most of his charges.  But one really rankles him:

“Do you remember that time, summer of that ‘Occupy Bloomington’ thing, when all those people kept going to the hospital cause they were ODing on bad spice?  The cops tried to pin that whole thing on me!  They put my picture on Fox News.  I was so fucking pissed!  I’ve done some stuff, but I didn’t do none of that.”

On translation and quantum mechanics.

On translation and quantum mechanics.

We have many ways to express ideas.  In this essay, I’ll attempt to convey my thoughts with English words.  Although this is the only metaphoric language that I know well, humans employ several thousand others – among these there may be several that could convey my ideas more clearly.

The distinct features of a language can change the way ideas feel

Perry Link writes that,

In teaching Chinese-language courses to American students, which I have done about thirty times, perhaps the most anguishing question I get is “Professor Link, what is the Chinese word for ______?”  I am always tempted to say the question makes no sense.

Anyone who knows two languages well knows that it is rare for words to match up perfectly, and for languages as far apart as Chinese and English, in which even grammatical categories are conceived differently, strict equivalence is not possible.

Book is not shu, because shu, like all Chinese nouns, is conceived as an abstraction, more like “bookness,” and to say “a book” you have to say, “one volume of bookness.”  Moreover shu, but not book, can mean “writing,” “letter,” or “calligraphy.”  On the other hand, you can “book a room” in English; you can’t shu one in Chinese.

There is no perfect way to translate an idea from Chinese words into English words, nor the other way around.  In Nineteen Ways of Looking at Wang Wei, Eliot Weinberger reviews several English reconstructions of a short, seductively simple Chinese poem.  The English variants feel very different from one another – each accentuates certain virtues of the original; by necessity, each also neglects others.

Visual appearances can’t be perfectly described with any metaphoric language.  I could write about a photograph, and maybe my impression would be interesting – the boy’s arms are turned outward, such that his hands would convey a gesture of welcome if not for his grenade, grimace, and fingers curled into a claw – but you’d probably rather see the picture.

Here’s Diane Arbus’s “Child with a toy hand grenade in Central Park, N.Y.C.” 

This isn’t to say that an image can’t be translated.  The version posted above is a translation.  The original image, created by light striking a photosensitive film, has been translated into a matrix of numbers.  Your computer reads these numbers and translates them back into an image.  If you enlarge this translation, your eyes will detect its numerical pixelation.

For this image, a matrix of numbers is a more useful translation than a paragraph of my words would be. 

From a tutorial on computer vision prepared by Amy Jin & Vivian Chiang at Stanford.

Different forms of communication – words, pictures, numbers, gestures, sounds – are better suited to convey different ideas.  The easiest way to teach organic chemistry is through the use of pictures – simple diagrams often suffice.  But I sometimes worked with students who weren’t very visual learners, and then I’d have to think of words or mathematical descriptions that could represent the same ideas.

Science magazine sponsors an annual contest called “Dance Your Ph.D.,” and although it might sound silly – can someone understand your research after watching human bodies move? – the contest evokes an important idea about translation.  There are many ways to convey any idea.  Research journals now incorporate a combination of words, equations, images, and video. 

Plant-soil feedbacks after severe tornado damage: Dance Your PhD 2014 from atinytornado on Vimeo.

A kinetic, three-dimensional dance might be better than words to explain a particular research topic.  When I talked about my graduate research in membrane trafficking, I always gesticulated profusely.

My spouse coached our local high school’s Science Olympiad team, preparing students for the “Write It Do It” contest.  In this competition, teams of two students collaborate – one student looks at an object and describes it, the other student reads that description and attempts to recreate the original object.  Crucially, the rules prohibit students from incorporating diagrams into their instructions.  The mandate to use words – and only words – makes “Write It Do It” devilishly tricky.

I love words, but they’re not the tools best suited for all ideas. 

If you’re curious about quantum mechanics, Beyond Weird by Philip Ball is a nice book.  Ball describes a wide variety of scientific principles in a very precise way – Ball’s language is more nuanced and exact than most researchers’.  Feynman would talk about what photons want, and when I worked in a laboratory that studied the electronic structure of laser-aligned gas clouds, buckyballs, and DNA, we’d sometimes anthropomorphize the behavior of electrons to get our thoughts across.  Ball broaches no such sloppiness.

Unfortunately, Ball combines linguistic exactitude with a dismissal of other ways of conveying information.  Ball claims that any scientific idea that doesn’t translate well into English is an insufficient description of the world:

When physicists exhort us to not get hung up on all-too-human words, we have a right to resist.  Language is the only vehicle we have for constructing and conveying meaning: for talking about our universe.  Relationships between numbers are no substitute.  Science deserves more than that.

By way of example, Ball gives a translation of Hugh Everette’s “many worlds” theory, points out the flaws in his own translated version, and then argues that these flaws undermine the theory.

To be fair, I think the “many worlds” theory is no good.  This is the belief that each “observation” – which means any event that links the states of various components of a system such that each component will evolve with restrictions on its future behavior (e.g. if you shine a light on a small object, photons will either pass by or hit it, which restricts where the object may be later) – causes a bifurcation of our universe.  A world would exist where a photon gets absorbed by an atom; another world exists where the atom is localized slightly to the side and the photon speeds blithely by.

The benefit of the “many worlds” interpretation is that physics can be seen as deterministic, not random.  Events only seem random because the consciousness that our present mind evolves into can inhabit only one of the many future worlds.

The drawback of the “many worlds” interpretation is that it presupposes granularity in our universe – physical space would have to be pixelated like computer images. Otherwise every interaction between two air molecules would presage the creation of infinite worlds.

If our world was granular, every interaction between two air molecules would still summon an absurd quantity of independent worlds, but mere absurdity doesn’t invalidate a theory.  There’s no reason why our universe should be structured in a way that’s easy for human brains to comprehend.  Without granularity, though, the “many worlds” theory is impossible, and we have no reason to think that granularity is a reasonable assumption.

It’s more parsimonious to assume that sometimes random things happen.  To believe that our God, although He doesn’t exist, rolls marbles.

(This is a bad joke, wrought by my own persnickety exactitude with words.  Stephen Hawking said, “God does play dice with the universe.  All the evidence points to him being an inveterate gambler, who throws the dice on every possible equation.”  But dice are granular.  With a D20, you can’t roll pi.  So the only way for God to avoid inadvertently pixelating His creation is to use infinite-sided dice, i.e. marbles.)

Image of dice by Diacritica on Wikimedia images.

Some physicists have argued that, although our words clearly fail when we attempt to describe the innermost workings of the universe, numbers should suffice.  Neil deGrasse Tyson said, “Math is the language of the universe.  So the more equations you know, the more you can converse with the cosmos.

Indeed, equations often seem to provide accurate descriptions of the way the world works.  But something’s wrong with our numbers.  Even mathematics falls short when we try to converse with the cosmos.

Our numbers are granular.  The universe doesn’t seem to be.

Irrational numbers didn’t bother me much when I was first studying mathematics.  Irrational numbers are things like the square root of two, which can only be expressed in decimal notation by using an infinite patternless series of digits.  Our numbers can’t even express the square root of two!

Similarly, our numbers can’t quite express the electronic structure of oxygen.  We can solve “two body problems,” but we typically can’t give a solution for “three body problems” – we have to rely on approximations when we analyze any circumstance in which there are three or more objects, like several planets orbiting a star, or several electrons surrounding a nucleus.

Oxygen is.  These molecules exist.  They move through our world and interact with their surroundings.  They behave precisely.  But we can’t express their precise behavior with numbers.  The problem isn’t due to any technical shortcoming in our computers – it’s that, if our universe isn’t granular, each oxygen behaves with infinite precision, and our numbers can only be used to express a finite degree of detail.

Using numbers, we can provide a very good translation, but never an exact replica.  So what hope do our words have?

The idea that we should be able to express all the workings of our universe in English – or even with numbers – reminds me of that old quote: “If English was good enough for Jesus, it ought to be good enough for the children of Texas.”  We humans exist through an unlikely quirk, a strange series of events.  And that’s wonderful!  You can feel pleasure.  You can walk out into the sunshine.  Isn’t it marvelous?  Evolution could have produced self-replicating objects that were just as successful as us without those objects ever feeling anything.  Rapacious hunger beasts could have been sufficient.  (Indeed, that’s how many of us act at times.)

But you can feel joy, and love, and happiness.  Capitalize on that!

And, yes, it’s thrilling to delve into the secrets of our universe.  But there’s no a priori reason to expect that these secrets should be expressible in the languages we’ve invented.