On attentiveness and names.

On attentiveness and names.

When a scientist first discovers a function for a gene, that scientist gets to name it.  Sometimes these names seem reasonable enough: I worked with a hematologist who did a study to identify proteins involved in apoptosis, which means roughly “programmed cell death” or “cellular suicide,” and so each gene wound up named “Requiem 3”, “Requiem 4,” etc.

Fruit fly geneticists tend to give their discoveries more creative names than other scientists.  There’s the gene “cheap date” – if a fruit fly is missing that gene, it will – ha ha – be unable to process ethanol and  so quickly passes out.  Another genetic mutation produced male flies that would court either males or females, and so this was known for over a decade as “fruity,” until another scientist decided that universal courtship could be less offensively described by the term “fruitless,” because clearly any mating-like activity that does not lead to progeny is a waste of time.

Yup, some gene names were bad.  One person’s idea of a joke might seem to somebody else like a mean-spirited reference to the wider world’s power dynamics.

Other gene names were bad not out of malice, but because humor at the expense of a fruit fly doesn’t make as many people laugh when a human child is dying. 

A gene that produces a somewhat spiky-shaped protein was named after Sonic Hedgehog.  It seemed funny at the time!  See?  The protein is spiky, the video game character has spiky hair, and … get it?  You get it, right?

 Okay, so this Sonic Hedgehog protein doesn’t look all that much like Sonic the Hedgehog.  But spend enough time staring at something like protein crystal structures and you’ll experience pareidolia, like seeing animal shapes in irregularly dappled plaster ceilings, or anthropomorphic gods amongst the twinklings of the stars.

Well, the Sonic Hedgehog protein establishes a concentration gradient that allows cells to recognize their spatial position in a developing body.  If a human fetus comes to term despite having a mutation in the Sonic Hedgehog gene (genetic abnormalities will often result in a miscarriage, but not always), the resulting child will have severe brain defects.

And then a doctor has to explain, “Your baby is suffering because of a Sonic Hedgehog mutation.”

And so, in 2006, geneticists capitulated to medical doctors. No more fanciful names for genes that might lie at the root of human health problems … which, because humans and fruit flies are actually pretty similar, means most genes.  Patients would now be told about a mutation in the SHH gene instead of Sonic Hedgehog, or a mutation in the LFNG gene instead of Lunatic Fringe.

Words have power, after all.


Some people are more attentive to their environments than others.  During evolutionary time, this trait was obviously good for humanity.  If your tribe is traveling through a hostile environment, it helps to have somebody around who is paying attention to the world.  A friend who’s primed to notice encroaching threats like a hungry lion about to leap out and attack.  Maybe we should take a different path.  Which, yeah, that sounds like a good idea.

Other people are particularly inattentive to their surroundings, so it’s easy for them to ignore the world and focus instead on one single problem.  During evolutionary time, this trait was surely good for humanity, too.  It’s helpful to have somebody on the lookout for threats that might eat you, obviously.  But it’s also helpful to have somebody who might discover a way of using dried grass to weave baskets.  A way of cooking mud into pottery that could carry or store water.

Image by Herb Roe on Wikimedia Commons.

Neurodiversity is a virtue in and of itself.  Over the millennia, the world has offered our species many challenges.  Populations that were sufficiently diverse that some members were good at each of a variety of tasks were most likely to flourish.  A cooperative species like termites or Homo sapiens benefits from specialization among its members.

Left to our their own devices, people would naturally fall asleep and wake up at different times.  Some brains are primed to work best in the early morning; others work best late at night.  And that’s good.  It reduces the amount of time that a tribe would be susceptible to attack, everyone asleep.

But in the modern world, we occasionally forget to feel grateful for the diversity that allowed our species to thrive.  The high school students whose brains are primed for late-night thinking drag themselves through morning classes like zombies.  They’ll be midway through first period before the sun rises.  Their teachers glance derisively at their slumped and scruffy forms and call them lazy.


Eventually, humans invented language.  Much later, we invented writing.  Much, much later, we invented the printing press, and then written words became so widely accessible that most humans could benefit from learning how to read.

Of course, reading is easier for people who are inattentive to their environment.

If I had been born earlier in human evolution, I totally would have been lion bait.  When I’m reading a book, or am deep in thought, the rest of the world melts away.  When I’m typing at home, K or the kids sometimes shout my name several times before I even realize that I’m being spoken to. 

People like me, or this kid at a library, totally would’ve been lion bait.

Luckily for me, I wasn’t born way back then.  Instead I was born into a world where inattentive people – the people best able to block out the world and instead focus on their own thoughts – are the most likely to find academic success.  People like me become medical doctors.  Then we get to name the world’s various conditions and maladies.

And so, when it came time to categorize the sort of person who is especially attentive to the world, people like me (who obviously thought that our way of being is the best way to be) referred to those others as having an attention deficit disorder.

Identifying those people’s awareness of their environs might sound like a virtue; instead, we castigated those people’s difficulty at ignoring the world.

I’ve never read the Percy Jackson books, but I’m glad that they exist, if only for passages like this (from The Lightning Thief):

“And the ADHD – you’re impulsive, can’t sit still in the classroom.  That’s your battlefield reflexes.  In a real fight, they’d keep you alive.  As for the attention problems, that’s because you see too much, Percy, not too little.”


Childhood trauma can cause symptoms that medical doctors term “attention deficit disorder.”  Which makes sense – if you’ve gone through an experience where your environs were threatening, you should learn to be more aware of your environment.  It should become more difficult to ignore a world that has proven itself to be dangerous.

Even for somebody with my type of brain, it’s going to be easier to sit outside and read a book when there’s a squirrel nearby than if there’s a prowling grizzly fifteen meters away.

Some children have to learn early on that daddy’s sometimes a grizzly.  And if it can happen to him, why not other grown-ups, too?  Best to stay on high alert around the teacher.  She’s trying to get you absorbed in these number tables … but what if that’s a trap?


Certain drugs can narrow a person’s perception of the world.  They act like blinders, chemicals like nicotine, ritalin, and amphetamines, both un-methylated (sold under the trade name Adderall) and methylated (a CH3 group attached to the amine moiety of Adderall will slow its degradation by CYP2D6 enzymes in the liver, increasing the duration of its effects).

Note to non-chemists: the methylated analogue of Adderall goes by several names, including “ice,” “shard,” and “crystal meth.”  Perhaps you’ve heard of it — this compound played a key role in the television show Breaking Bad.  And it’s very similar to the stuff prescribed to eight year olds.  Feel free to glance at the chemical structures, below.

In poetry class last week, a man who has cycled in and out of jail several times during the few years I’ve taught there – who I’d said “hello” to on the outside just a few weeks earlier when he rode his bicycle past the high school runners and me – plonked himself down in the squeaky plastic hair next to mine.

I groaned.

“I know, I know,” he said.  “But I might be out on Monday.”

“What happened?”

“Failed a urine screen.  But I was doing good.  Out for six months, and they were screening me like all the time, I only failed three of them.”

“With … ?”

“Meth,” he said, nodding.  “But I wasn’t hitting it bad, this time.  I know I look like I lost some weight, dropped from 230 down to 205, but that’s just cause it was hard getting enough to eat.  Wasn’t like last time.  I don’t know if you remember, like, just how gaunt my whole face looked when they brought me in.  But, man, it’s just … as soon as I step outside this place, my anxiety shoots through the roof … “

This is apparently a common phenomenon.  When we incarcerate people, we carve away so much of their experience of the world.  Inside the jail, there is a set routine.  Somebody is often barking orders, telling people exactly what to do.  There aren’t even many colors to be distracted by, just the white-painted concrete walls, the faded orange of inmate scrubs, the dull tan CO shirts and dark brown pants.

The world in there is bleak, which means there are very few choices to make.  Will you sit and try to listen to the TV?  (The screen is visible from three or four of the twelve cells, but not from the others.)  Try, against all odds, to read a book?  Or add your shouting voice to the din, trying to have a conversation (there’s no weather, so instead the fall-back topic is speculating what’s going to be served for dinner)?

After spending time locked up, a person’s ability to navigate the wider world atrophies, the same as your leg would if you spent months with it bundled up in a cast.

And these are people whom we should be helping to learn how to navigate the world better.

“ … so I vape a lot, outside.  I step out of this place, that’s the first thing I do, suck down a cigarette.  And, every now and then … “

He feels physically pained, being so attentive to his surroundings.  And so he doses himself with chemicals that let him ignore the world as well as I can.

And, yes.  He grew up with an abusive stepfather.  This led to his acting squirrelly in school.  And so, at ten years old, medical doctors began dosing him with powerful stimulants.

Meanwhile, our man dutifully internalized the thought that he had a personal failing.  The doctors referred to his hyper-vigilance as an attention deficit disorder.


Words have power.

We can’t know now, after all the hurt we’ve piled on him, but think: where might our man be if he’d learned to think of his attentiveness as a virtue?

On perception and learning.

On perception and learning.

Cuddly.

Fearful.

Monstrous.

Peering with the unwavering focus of a watchful overlord.

A cat could seem to be many different things, and Brendan Wenzel’s recent picture book They All Saw a Cat conveys these vagrancies of perception beautifully. Though we share the world, we all see and hear and taste it differently. Each creature’s mind filters a torrential influx of information into manageable experience; we all filter the world differently.

They All Saw a Cat ends with a composite image. We see the various components that were focused on by each of the other animals, amalgamated into something approaching “cat-ness.” A human child noticed the cat’s soft fur, a mouse noticed its sharp claws, a fox noticed its swift speed, a bird noticed that it can’t fly.

All these properties are essential descriptors, but so much is blurred away by our minds. When I look at a domesticated cat, I tend to forget about the sharp claws and teeth. I certainly don’t remark on its lack of flight – being landbound myself, this seems perfectly ordinary to me. To be ensnared by gravity only seems strange from the perspective of a bird.

theyallsawThere is another way of developing the concept of “cat-ness,” though. Instead of compiling many creatures’ perceptions of a single cat, we could consider a single perceptive entity’s response to many specimens. How, for instance, do our brains learn to recognize cats?

When a friend (who teaches upper-level philosophy) and I were talking about Ludwig Wittgenstein’s Philosophical Investigations, I mentioned that I felt many of the aims of that book could be accomplished with a description of principal component analysis paired with Gideon Lewis-Kraus’s lovely New York Times Magazine article on Google Translate.

My friend looked at me with a mix of puzzlement and pity and said, “No.” Then added, as regards Philosophical Investigations, “You read it too fast.”

wittgensteinOne of Wittgenstein’s aims is to show how humans can learn to use language… which is complicated by the fact that, in my friend’s words, “Any group of objects will share more than one commonality.” He posits that no matter how many red objects you point to, they’ll always share properties other than red-ness in common.

Or cats… when you’re teaching a child how to speak and point out many cats, will they have properties other than cat-ness in common?

In some ways, I agree. After all, I think the boundaries between species are porous. I don’t think there is a set of rules that could be used to determine whether a creature qualifies for personhood, so it’d be a bit silly if I also claimed that cat-ness could be clearly defined.

But when I point and say “That’s a cat!”, chances are that you’ll think so too. Even if no one had ever taught us what cats are, most people in the United States have seen enough of them to think “All those furry, four-legged, swivel-tailed, pointy-eared, pouncing things were probably the same type of creature!”

Even a computer can pick out these commonalities. When we learn about the world, we have a huge quantity of sensory data to draw upon – cats make those noises, they look like that when they find a sunny patch of grass to lie in, they look like that when they don’t want me to pet them – but a computer can learn to identify cat-ness using nothing more than grainy stills from Youtube.

Quoc Le et al. fed a few million images from Youtube videos to a computer algorithm that was searching for commonalities between the pictures. Even though the algorithm was given no hints as to the nature of the videos, it learned that many shared an emphasis on oblong shapes with triangles on top… cat faces. Indeed, when Le et al. made a visualization of the patterns that were causing their algorithm to cluster these particular videos together, we can recognize a cat in that blur of pixels.

The computer learns in a way vaguely analogous to the formation of social cliques in a middle school cafeteria. Each kid is a beautiful and unique snowflake, sure, but there are certain properties that cause them to cluster together: the sporty ones, the bookish ones, the D&D kids. For a neural network, each individual is only distinguished by voting “yes” or “no,” but you can cluster the individuals who tend to vote “yes” at the same time. For a small grid of black and white pixels, some individuals will be assigned to the pixels and vote “yes” only when their pixels are white… but others will watch the votes of those first responders and vote “yes” if they see a long line of “yes” votes in the top quadrants, perhaps… and others could watch those votes, allowing for layers upon layers of complexity in analysis.

three-body-problem-by-cixin-liu-616x975And I should mention that I feel indebted to Liu Cixin’s sci-fi novel The Three-Body Problem for thinking to humanize a computer algorithm this way. Liu includes a lovely description of a human motherboard, with triads of trained soldiers hoisting red or green flags forming each logic gate.

In the end, the algorithm developed by Le et al. clustered only 75% of the frames from Youtube cat videos together – it could recognize many of these as being somehow similar, but it was worse at identifying cat-ness than the average human child. But it’s pretty easy to realize why: after all, Le et al. titled their paper “Building high-level features using large scale unsupervised learning.”

Proceedings of the International Conference on Machine Learning 2010
You might have to squint, but there’s a cat here. Or so says their algorithm.

When Wittgenstein writes about someone watching builders – one person calls out “Slab!”, the other brings a large flat rock – he is also considering unsupervised learning. And so it is easy for Wittgenstein to imagine that the watcher, even after exclaiming “Now I’ve got it!”, could be stymied by a situation that went beyond the training.

Many human cultures have utilized unsupervised learning as a major component of childrearing – kids are expected to watch their elders and puzzle out on their own how to do everything in life – but this potential inflexibility that Wittgenstein alludes to underlies David Lancy’s advice in The Anthropology of Childhood that children will fair best in our modern world when they have someone guiding their education and development.

Unsupervised learning may be sufficient to prepare children for life in an agrarian village. Unsupervised learning is sufficient for chimpanzees learning how to crack nuts. And unsupervised learning is sufficient to for a computer to develop an idea about what cats are.

But the best human learning employs the scientific method – purposefully seeking out “no.”

I assume most children reflexively follow the scientific method – my daughter started shortly after her first birthday. I was teaching her about animals, and we started with dogs. At first, she pointed primarily to creatures that looked like her Uncle Max. Big, brown, four-legged, slobbery.

IMG_5319.JPG
Good dog.

Eventually she started pointing to creatures that looked slightly different: white dogs, black dogs, small dogs, quiet dogs. And then the scientific method kicked in.

She’d point to a non-dog, emphatically claiming it to be a dog as well. And then I’d explain why her choice wasn’t a dog. What features cause an object to be excluded from the set of correct answers?

Eventually she caught on.

Many adults, sadly, are worse at this style of thinking than children. As we grow, it becomes more pressing to seem competent. We adults want our guesses to be right – we want to hear yes all the time – which makes it harder to learn.

The New York Times recently presented a clever demonstration of this. They showed a series of numbers that follow a rule, let readers type in new numbers to see if their guesses also followed the rule, and asked for readers to describe what the rule was.

A scientist would approach this type of puzzle by guessing a rule and then plugging in numbers that don’t follow it – nothing is ever really proven in science, but we validate theories by designing experiments that should tell us “no” if our theory is wrong. Only theories that all “falsifiable” fall under the purvey of science. And the best fields of science devote considerable resources to seeking out opportunities to prove ourselves wrong.

But many adults, wanting to seem smart all the time, fear mistakes. When that New York Times puzzle was made public, 80% of readers proposed a rule without ever hearing that a set of numbers didn’t follow it.

Wittgenstein’s watcher can’t really learn what “Slab!” means until perversely hauling over some other type of rock and being told, “no.”

We adults can’t fix the world until we learn from children that it’s okay to look ignorant sometimes. It’s okay to be wrong – just say “sorry” and “I’ll try to do better next time.”

Otherwise we’re stuck digging in our heels and arguing for things we should know to be ridiculous.

It doesn’t hurt so bad. Watch: nope, that one’s not a cat.

16785014164_0b8a71b191_z
Photo by John Mason on Flickr.