On meditation and the birth of the universe.

On meditation and the birth of the universe.

This is part of a series of essays prepared to discuss in jail.

Our bodies are chaos engines. 

In our nearby environment, we produce order.  We form new memories.  We build things.  We might have sex and create new life.  From chaos, structure.

As we create local order, though, we radiate disorder into the universe. 

The laws of physics work equally well whether time is moving forward or backward.  The only reason we experience time as flowing forward is that the universe is progressing from order into chaos.

In the beginning, everything was homogeneous.  The same stuff was present everywhere.  Now, some regions of the universe are different from others.  One location contains our star; another location, our planet.  Each of our bodies is very different from the space around us.

This current arrangement is more disorderly than the early universe, but less so than what our universe will one day become.  Life is only possible during this intermediate time, when we are able to eat structure and excrete chaos. 

Hubble peers into a stellar nursery. Image courtesy of NASA Marshall Space Flight on Flickr.

Sunlight shines on our planet – a steady stream of high-energy photons all pointed in the same direction.  Sunshine is orderly.  But then plants eat sunshine and carbon dioxide to grow.  Animals eat the plants.  As we live, we radiate heat – low-energy photons that spill from our bodies in all directions.

The planet Earth, with all its life, acts like one big chaos engine.  We absorb photons from the sun, lower their energy, increase their number, and scatter them.

We’ll continue until we can’t.

#

Our universe is mostly filled with empty space. 

But empty space does not stay empty.  Einstein’s famous equation, E equals M C squared, describes the chance that stuff will suddenly pop into existence.  This happens whenever a region of space gathers too much energy.

Empty space typically has a “vacuum energy” of one billionth of a joule per cubic meter.  An empty void the size of our planet would have about as much energy as a teaspoon of sugar.  Which doesn’t seem like much.  But even a billionth of a joule is thousands of times higher than the energy needed to summon electrons into being.

And there are times when a particular patch of vacuum has even more energy than that.

#

According to the Heisenberg Uncertainty Principle, time and energy can’t be defined simultaneously.  Precision in time causes energy to spread – the energy becomes both lower and higher than you expected.

In practice, the vacuum energy of a particular region of space will seem to waver.  Energy is blurry, shimmering over time.

There are moments when even the smallest spaces have more than enough energy to create new particles.

Objects usually appear in pairs: a particle and its anti-particle.  Anti-matter is exactly like regular matter except that each particle has an opposite charge.  In our world, protons are positive and electrons are negative, but an anti-proton is negative and an anti-electron is positive.

If a particle and its anti-particle find each other, they explode.

When pairs of particles appear, they suck up energy.  Vacuum energy is stored inside them.  Then the particles waffle through space until they find and destroy each other.  Energy is returned to the void.

This constant exchange is like the universe breathing.  Inhale: the universe dims, a particle and anti-particle appear.  Exhale: they explode.

#

Our universe is expanding.  Not only are stars and galaxies flying away from each other in space, but also empty space itself is growing.  The larger a patch of nothingness, the faster it will grow.  In a stroke of blandness, astronomers named the force powering this growth “dark energy.”

Long ago, our universe grew even faster than it does today.  Within each small fraction of a second, our universe doubled in size.  Tiny regions of space careened apart billions of times faster than the speed of light.

This sudden growth was extremely improbable.  For this process to begin, the energy of a small space had to be very, very large.  But the Heisenberg Uncertainty Principle claims that – if we wait long enough – energy can take on any possible value.  Before the big bang, our universe had a nearly infinite time to wait.

After that blip, our universe expanded so quickly because the vacuum of space was perched temporarily in a high-energy “metastable” state.  Technically balanced, but warily.  Like a pencil standing on its tip.  Left alone, it might stay there forever, but the smallest breath of air would cause this pencil to teeter and fall.

Similarly, a tiny nudge caused our universe to tumble back to its expected energy.  A truly stable vacuum.  The world we know today was born – still growing, but slowly.

#

During the time of rapid expansion, empty vacuum had so much energy that particles stampeded into existence.  The world churned with particles, all so hot that they zipped through space at nearly the speed of light. 

For some inexplicable reason, for every billion pairs of matter and anti-matter, one extra particle of matter appeared.  When matter and anti-matter began to find each other and explode, this billionth extra bit remained.

This small surplus formed all of stars in the sky.  The planets.  Ourselves.

#

Meditation is like blinking.  You close your eyes, time passes, then you open your eyes again.  Meditation is like a blink where more time passes.

But more is different.

#

Our early universe was filled with the smallest possible particles.  Quarks, electrons, and photons.  Because their energy was so high, they moved too fast to join together.  Their brilliant glow filled the sky, obscuring our view of anything that had happened before.

As our universe expanded, it cooled.  Particles slowed down.  Three quarks and an electron can join to form an atom of hydrogen.  Two hydrogen atoms can join to form hydrogen gas.  And as you combine more and more particles together, your creations can be very different from a hot glowing gas.  You can form molecules, cells, animals, societies.

#

When a cloud of gas is big enough, its own gravity can pull everything inward.  The cloud becomes more and more dense until nuclear fusion begins, releasing energy just like a nuclear bomb.  These explosions keep the cloud from shrinking further.

The cloud has become a star.

Nuclear fusion occurs because atoms in the center of the cloud are squooshed too close together.  They merge: a few small atoms become one big atom.  If you compared their weights – four hydrogens at the start, one helium at the finish – you’d find that a tiny speck of matter had disappeared.  And so, according to E equals M C squared, it released a blinding burst of energy.

The largest hydrogen bomb detonated on Earth was 50 megatons – the Kuz’kina Mat tested in Russia in October, 1961.  It produced a mushroom cloud ten times the height of Mount Everest.  This test explosion destroyed houses hundreds of miles away.

The fireball of Tsar Bomba, the Kuz’kina Mat.

Every second, our sun produces twenty billion times more energy than this largest Earth-side blast.

#

Eventually, our sun will run out of fuel.  Our sun shines because it turns hydrogen into helium, but it is too light to compress helium into any heavier atoms.  Our sun has burned for about four billion years, and it will probably survive for another five billion more.  Then the steady inferno of nuclear explosions will end.

When a star exhausts its fuel, gravity finally overcomes the resistance of the internal explosions.  The star shrinks.  It might crumple into nothingness, becoming a black hole.  Or it might go supernova – recoiling like a compressed spring that slips from your hand – and scatter its heavy atoms across the universe.

Planets are formed from the stray viscera of early stars.

Supernova remains. Image by NASA’s Chandra X-Ray Observatory and the European Space Agency’s XMM-Newton.

#

Our universe began with only hydrogen gas.  Every type of heavier atom – carbon, oxygen, iron, plutonium – was made by nuclear explosions inside the early stars.

When a condensing cloud contains both hydrogen gas and particulates of heavy atoms, the heavy atoms create clumps that sweep through the cloud far from its center.  Satellites, orbiting the star.  Planets.

Nothing more complicated than atoms can form inside stars.  It’s too hot – the belly of our sun is over twenty million degrees.  Molecules would be instantly torn apart.  But planets – even broiling, meteor-bombarded planets – are peaceful places compared to stars.

Molecules are long chains of atoms.  Like atoms, molecules are made from combinations of quarks and electrons.  The material is the same – but there’s more of it.

More is different.

Some atoms have an effect on our bodies.  If you inhale high concentrations of oxygen – an atom with eight protons – you’ll feel euphoric and dizzy.  If you drink water laced with lithium – an atom with three protons – your brain might become more stable.

But the physiological effects of atoms are crude compared to molecules.  String fifty-three atoms together in just the right shape – a combination of two oxygens, twenty-one carbons, and thirty hydrogens – and you’ll have tetrahydrocannibol.  String forty-nine atoms together in just the right shape – one oxygen, three nitrogens, twenty carbons, and twenty-five hydrogens – and you’ll have lysergic acid diethylamide.

The effects of these molecules are very different from the effects of their constituent parts.  You’d never predict what THC feels like after inhaling a mix of oxygen, carbon, and hydrogen gas.

#

An amino acid is comparable in scale to THC or LSD, but our bodies aren’t really made of amino acids.  We’re built from proteins – anywhere from a few dozen to tens of thousands of amino acids linked together.  Proteins are so large that they fold into complex three-dimensional shapes.  THC has its effect because some proteins in your brain are shaped like catcher’s mitts, and the cannibinoid nestles snuggly in the pocket of the glove.

Molecules the size of proteins can make copies of themselves.  The first life-like molecules on Earth were long strands of ribonucleic acid – RNA.  A strand of RNA can replicate as it floats through water.  RNA acts as a catalyst – it speeds up the reactions that form other molecules, including more RNA.

Eventually, some strands of RNA isolated themselves inside bubbles of soap.  Then the RNA could horde – when a particular sequence of RNA catalyzed reactions, no other RNA would benefit from the molecules it made.  The earliest cells were bubbles that could make more bubbles.

Cells can swim.  They eat.  They live and die.  Even single-celled bacteria have sex: they glom together, build small channels linking their insides to each other, and swap DNA.

But with more cells, you can make creatures like us.

#

Consciousness is an emergent property.  With a sufficient number of neuron cells connected to each other, a brain is able to think and plan and feel.  In humans, 90 billion neuron cells direct the movements of a 30-trillion-cell meat machine.

Humans are such dexterous clever creatures that we were able to discover the origin of our universe.  We’ve dissected ourselves so thoroughly that we’ve seen the workings of cells, molecules, atoms, and subatomic particles.

But a single human animal, in isolation, never could have learned that much.

Individual humans are clever, but to form a culture complex enough to study particle physics, you need more humans.  Grouped together, we are qualitatively different.  The wooden technologies of Robinson Crusoe, trapped on a desert island, bear little resemblance to the vaulted core of a particle accelerator.

English writing uses just 26 letters, but these can be combined to form several hundred thousand different words, and these can be combined to form an infinite number of different ideas.

More is different.  The alphabet alone couldn’t give anyone insight into the story of your life.

#

Meditation is like a blink where more time passes, but the effect is very different.

Many religions praise the value of meditation, especially in their origin stories.  Before Jesus began his ministry, he meditated for 40 days in the Judaean Desert – his mind’s eye saw all the world’s kingdoms prostrate before him, but he rejected that power in order to spread a philosophy of love and charity. 

Before Buddha began his ministry, he meditated for 49 days beneath the Bodhi tree – he saw a path unfurl, a journey that would let travelers escape our world’s cycle of suffering. 

Before Odin began his ministry, he meditated for 9 days while hanging from a branch of Yggdrasil, the world tree – Odin felt that he died, was reborn, and could see the secret language of the universe shimmering beneath him. 

The god Shiva meditated in graveyards, smearing himself with crematory ash.

At its extreme, meditation is purportedly psychedelic.  Meditation can induce brain states that are indistinguishable from LSD trips when visualized by MRI.  Meditation isolates the brain from its surroundings, and isolation can trigger hallucination.

Researchers have found that meditation can boost our moods, attentiveness, cognitive flexibility, and creativity.  Our brains are plastic – changeable.  We can alter the way we experience the world.  Many of our thoughts are the result of habit.  Meditation helps us change those habits.  Any condition that is rooted in our brain – like depression, insomnia, chronic pain, or addiction – can be helped with meditation.

To meditate, we have to sit, close our eyes, and attempt not to think.  This is strikingly difficult.  Our brains want to be engaged.  After a few minutes, most people experience a nagging sense that we’re wasting time.

But meditation gives our minds a chance to re-organize.  To structure ourselves.  And structure is the property that allows more of something to become different.  Squirrels don’t form complex societies – a population of a hundred squirrels will behave similarly to a population of a million or a billion.  Humans form complex webs of social interactions – as our numbers grew through history, societies changed in dramatic ways.

Before there was structure, our entire universe was a hot soup of quarks and electrons, screaming through the sky.  Here on Earth, these same particles can be organized into rocks, or chemicals, or squirrels, or us.  How we compose ourselves is everything.

#

The easiest form of meditation uses mantras – this is sometimes called “transcendental meditation” by self-appointed gurus who charge people thousands of dollars to participate in retreats.  Each attendee is given a “personalized” mantra, a short word or phrase to intone silently with every breath.  The instructors dole mantras based on a chart, and each is Sanskrit.  They’re meaningless syllables to anyone who doesn’t speak the language.

Any two-syllable word or phrase should work equally well, but you’re best off carving something uplifting into your brain.  “Make peace” or “all one” sound trite but are probably more beneficial than “more hate.”  The Sanskrit phrase “sat nam” is a popular choice, which translates as “truth name” or more colloquially as “to know the true nature of things.”

The particular mantra you choose matters less than the habit – whichever phrase you choose, you should use it for every practice.  Because meditation involves sitting motionless for longer than we’re typically accustomed, most people begin by briefly stretching.  Then sit comfortably.  Close your eyes.  As you breathe in, silently think the first syllable of your chosen phrase.  As you breathe out, think the second.

Repeating a mantra helps to crowd out other thoughts, as well as distractions from your environment.  Your mind might wander – if you catch yourself, just try to get back to repeating your chosen phrase.  No one does it perfectly, but practice makes better.  When a meditation instructor’s students worried that their practice wasn’t good enough, he told them that “even on a shallow dive, you still get wet.”

In a quiet space, you might take a breath every three to six seconds.  In a noisy room, you might need to breathe every second, thinking the mantra faster to block out external sound.  The phrase is a tool to temporarily isolate your mind from the world.

Most scientific studies recommend you meditate for twenty minutes at a time, once or twice a day, each and every day.  It’s not easy to carve out this much time from our daily routines.  Still, some is better than nothing.  Glance at a clock before you close your eyes, and again after you open them.  Eventually, your mind will begin to recognize the passage of time.  After a few weeks of practice, your body might adopt the approximate rhythm of twenty minutes.

Although meditation often feels pointless during the first week of practice, there’s a difference between dabbling and a habit.  Routine meditation leads to benefits that a single experience won’t.

More is different.

On attentiveness and names.

On attentiveness and names.

When a scientist first discovers a function for a gene, that scientist gets to name it.  Sometimes these names seem reasonable enough: I worked with a hematologist who did a study to identify proteins involved in apoptosis, which means roughly “programmed cell death” or “cellular suicide,” and so each gene wound up named “Requiem 3”, “Requiem 4,” etc.

Fruit fly geneticists tend to give their discoveries more creative names than other scientists.  There’s the gene “cheap date” – if a fruit fly is missing that gene, it will – ha ha – be unable to process ethanol and  so quickly passes out.  Another genetic mutation produced male flies that would court either males or females, and so this was known for over a decade as “fruity,” until another scientist decided that universal courtship could be less offensively described by the term “fruitless,” because clearly any mating-like activity that does not lead to progeny is a waste of time.

Yup, some gene names were bad.  One person’s idea of a joke might seem to somebody else like a mean-spirited reference to the wider world’s power dynamics.

Other gene names were bad not out of malice, but because humor at the expense of a fruit fly doesn’t make as many people laugh when a human child is dying. 

A gene that produces a somewhat spiky-shaped protein was named after Sonic Hedgehog.  It seemed funny at the time!  See?  The protein is spiky, the video game character has spiky hair, and … get it?  You get it, right?

 Okay, so this Sonic Hedgehog protein doesn’t look all that much like Sonic the Hedgehog.  But spend enough time staring at something like protein crystal structures and you’ll experience pareidolia, like seeing animal shapes in irregularly dappled plaster ceilings, or anthropomorphic gods amongst the twinklings of the stars.

Well, the Sonic Hedgehog protein establishes a concentration gradient that allows cells to recognize their spatial position in a developing body.  If a human fetus comes to term despite having a mutation in the Sonic Hedgehog gene (genetic abnormalities will often result in a miscarriage, but not always), the resulting child will have severe brain defects.

And then a doctor has to explain, “Your baby is suffering because of a Sonic Hedgehog mutation.”

And so, in 2006, geneticists capitulated to medical doctors. No more fanciful names for genes that might lie at the root of human health problems … which, because humans and fruit flies are actually pretty similar, means most genes.  Patients would now be told about a mutation in the SHH gene instead of Sonic Hedgehog, or a mutation in the LFNG gene instead of Lunatic Fringe.

Words have power, after all.


Some people are more attentive to their environments than others.  During evolutionary time, this trait was obviously good for humanity.  If your tribe is traveling through a hostile environment, it helps to have somebody around who is paying attention to the world.  A friend who’s primed to notice encroaching threats like a hungry lion about to leap out and attack.  Maybe we should take a different path.  Which, yeah, that sounds like a good idea.

Other people are particularly inattentive to their surroundings, so it’s easy for them to ignore the world and focus instead on one single problem.  During evolutionary time, this trait was surely good for humanity, too.  It’s helpful to have somebody on the lookout for threats that might eat you, obviously.  But it’s also helpful to have somebody who might discover a way of using dried grass to weave baskets.  A way of cooking mud into pottery that could carry or store water.

Image by Herb Roe on Wikimedia Commons.

Neurodiversity is a virtue in and of itself.  Over the millennia, the world has offered our species many challenges.  Populations that were sufficiently diverse that some members were good at each of a variety of tasks were most likely to flourish.  A cooperative species like termites or Homo sapiens benefits from specialization among its members.

Left to our their own devices, people would naturally fall asleep and wake up at different times.  Some brains are primed to work best in the early morning; others work best late at night.  And that’s good.  It reduces the amount of time that a tribe would be susceptible to attack, everyone asleep.

But in the modern world, we occasionally forget to feel grateful for the diversity that allowed our species to thrive.  The high school students whose brains are primed for late-night thinking drag themselves through morning classes like zombies.  They’ll be midway through first period before the sun rises.  Their teachers glance derisively at their slumped and scruffy forms and call them lazy.


Eventually, humans invented language.  Much later, we invented writing.  Much, much later, we invented the printing press, and then written words became so widely accessible that most humans could benefit from learning how to read.

Of course, reading is easier for people who are inattentive to their environment.

If I had been born earlier in human evolution, I totally would have been lion bait.  When I’m reading a book, or am deep in thought, the rest of the world melts away.  When I’m typing at home, K or the kids sometimes shout my name several times before I even realize that I’m being spoken to. 

People like me, or this kid at a library, totally would’ve been lion bait.

Luckily for me, I wasn’t born way back then.  Instead I was born into a world where inattentive people – the people best able to block out the world and instead focus on their own thoughts – are the most likely to find academic success.  People like me become medical doctors.  Then we get to name the world’s various conditions and maladies.

And so, when it came time to categorize the sort of person who is especially attentive to the world, people like me (who obviously thought that our way of being is the best way to be) referred to those others as having an attention deficit disorder.

Identifying those people’s awareness of their environs might sound like a virtue; instead, we castigated those people’s difficulty at ignoring the world.

I’ve never read the Percy Jackson books, but I’m glad that they exist, if only for passages like this (from The Lightning Thief):

“And the ADHD – you’re impulsive, can’t sit still in the classroom.  That’s your battlefield reflexes.  In a real fight, they’d keep you alive.  As for the attention problems, that’s because you see too much, Percy, not too little.”


Childhood trauma can cause symptoms that medical doctors term “attention deficit disorder.”  Which makes sense – if you’ve gone through an experience where your environs were threatening, you should learn to be more aware of your environment.  It should become more difficult to ignore a world that has proven itself to be dangerous.

Even for somebody with my type of brain, it’s going to be easier to sit outside and read a book when there’s a squirrel nearby than if there’s a prowling grizzly fifteen meters away.

Some children have to learn early on that daddy’s sometimes a grizzly.  And if it can happen to him, why not other grown-ups, too?  Best to stay on high alert around the teacher.  She’s trying to get you absorbed in these number tables … but what if that’s a trap?


Certain drugs can narrow a person’s perception of the world.  They act like blinders, chemicals like nicotine, ritalin, and amphetamines, both un-methylated (sold under the trade name Adderall) and methylated (a CH3 group attached to the amine moiety of Adderall will slow its degradation by CYP2D6 enzymes in the liver, increasing the duration of its effects).

Note to non-chemists: the methylated analogue of Adderall goes by several names, including “ice,” “shard,” and “crystal meth.”  Perhaps you’ve heard of it — this compound played a key role in the television show Breaking Bad.  And it’s very similar to the stuff prescribed to eight year olds.  Feel free to glance at the chemical structures, below.

In poetry class last week, a man who has cycled in and out of jail several times during the few years I’ve taught there – who I’d said “hello” to on the outside just a few weeks earlier when he rode his bicycle past the high school runners and me – plonked himself down in the squeaky plastic hair next to mine.

I groaned.

“I know, I know,” he said.  “But I might be out on Monday.”

“What happened?”

“Failed a urine screen.  But I was doing good.  Out for six months, and they were screening me like all the time, I only failed three of them.”

“With … ?”

“Meth,” he said, nodding.  “But I wasn’t hitting it bad, this time.  I know I look like I lost some weight, dropped from 230 down to 205, but that’s just cause it was hard getting enough to eat.  Wasn’t like last time.  I don’t know if you remember, like, just how gaunt my whole face looked when they brought me in.  But, man, it’s just … as soon as I step outside this place, my anxiety shoots through the roof … “

This is apparently a common phenomenon.  When we incarcerate people, we carve away so much of their experience of the world.  Inside the jail, there is a set routine.  Somebody is often barking orders, telling people exactly what to do.  There aren’t even many colors to be distracted by, just the white-painted concrete walls, the faded orange of inmate scrubs, the dull tan CO shirts and dark brown pants.

The world in there is bleak, which means there are very few choices to make.  Will you sit and try to listen to the TV?  (The screen is visible from three or four of the twelve cells, but not from the others.)  Try, against all odds, to read a book?  Or add your shouting voice to the din, trying to have a conversation (there’s no weather, so instead the fall-back topic is speculating what’s going to be served for dinner)?

After spending time locked up, a person’s ability to navigate the wider world atrophies, the same as your leg would if you spent months with it bundled up in a cast.

And these are people whom we should be helping to learn how to navigate the world better.

“ … so I vape a lot, outside.  I step out of this place, that’s the first thing I do, suck down a cigarette.  And, every now and then … “

He feels physically pained, being so attentive to his surroundings.  And so he doses himself with chemicals that let him ignore the world as well as I can.

And, yes.  He grew up with an abusive stepfather.  This led to his acting squirrelly in school.  And so, at ten years old, medical doctors began dosing him with powerful stimulants.

Meanwhile, our man dutifully internalized the thought that he had a personal failing.  The doctors referred to his hyper-vigilance as an attention deficit disorder.


Words have power.

We can’t know now, after all the hurt we’ve piled on him, but think: where might our man be if he’d learned to think of his attentiveness as a virtue?