On meditation and the birth of the universe.

On meditation and the birth of the universe.

This is part of a series of essays prepared to discuss in jail.

Our bodies are chaos engines. 

In our nearby environment, we produce order.  We form new memories.  We build things.  We might have sex and create new life.  From chaos, structure.

As we create local order, though, we radiate disorder into the universe. 

The laws of physics work equally well whether time is moving forward or backward.  The only reason we experience time as flowing forward is that the universe is progressing from order into chaos.

In the beginning, everything was homogeneous.  The same stuff was present everywhere.  Now, some regions of the universe are different from others.  One location contains our star; another location, our planet.  Each of our bodies is very different from the space around us.

This current arrangement is more disorderly than the early universe, but less so than what our universe will one day become.  Life is only possible during this intermediate time, when we are able to eat structure and excrete chaos. 

Hubble peers into a stellar nursery. Image courtesy of NASA Marshall Space Flight on Flickr.

Sunlight shines on our planet – a steady stream of high-energy photons all pointed in the same direction.  Sunshine is orderly.  But then plants eat sunshine and carbon dioxide to grow.  Animals eat the plants.  As we live, we radiate heat – low-energy photons that spill from our bodies in all directions.

The planet Earth, with all its life, acts like one big chaos engine.  We absorb photons from the sun, lower their energy, increase their number, and scatter them.

We’ll continue until we can’t.

#

Our universe is mostly filled with empty space. 

But empty space does not stay empty.  Einstein’s famous equation, E equals M C squared, describes the chance that stuff will suddenly pop into existence.  This happens whenever a region of space gathers too much energy.

Empty space typically has a “vacuum energy” of one billionth of a joule per cubic meter.  An empty void the size of our planet would have about as much energy as a teaspoon of sugar.  Which doesn’t seem like much.  But even a billionth of a joule is thousands of times higher than the energy needed to summon electrons into being.

And there are times when a particular patch of vacuum has even more energy than that.

#

According to the Heisenberg Uncertainty Principle, time and energy can’t be defined simultaneously.  Precision in time causes energy to spread – the energy becomes both lower and higher than you expected.

In practice, the vacuum energy of a particular region of space will seem to waver.  Energy is blurry, shimmering over time.

There are moments when even the smallest spaces have more than enough energy to create new particles.

Objects usually appear in pairs: a particle and its anti-particle.  Anti-matter is exactly like regular matter except that each particle has an opposite charge.  In our world, protons are positive and electrons are negative, but an anti-proton is negative and an anti-electron is positive.

If a particle and its anti-particle find each other, they explode.

When pairs of particles appear, they suck up energy.  Vacuum energy is stored inside them.  Then the particles waffle through space until they find and destroy each other.  Energy is returned to the void.

This constant exchange is like the universe breathing.  Inhale: the universe dims, a particle and anti-particle appear.  Exhale: they explode.

#

Our universe is expanding.  Not only are stars and galaxies flying away from each other in space, but also empty space itself is growing.  The larger a patch of nothingness, the faster it will grow.  In a stroke of blandness, astronomers named the force powering this growth “dark energy.”

Long ago, our universe grew even faster than it does today.  Within each small fraction of a second, our universe doubled in size.  Tiny regions of space careened apart billions of times faster than the speed of light.

This sudden growth was extremely improbable.  For this process to begin, the energy of a small space had to be very, very large.  But the Heisenberg Uncertainty Principle claims that – if we wait long enough – energy can take on any possible value.  Before the big bang, our universe had a nearly infinite time to wait.

After that blip, our universe expanded so quickly because the vacuum of space was perched temporarily in a high-energy “metastable” state.  Technically balanced, but warily.  Like a pencil standing on its tip.  Left alone, it might stay there forever, but the smallest breath of air would cause this pencil to teeter and fall.

Similarly, a tiny nudge caused our universe to tumble back to its expected energy.  A truly stable vacuum.  The world we know today was born – still growing, but slowly.

#

During the time of rapid expansion, empty vacuum had so much energy that particles stampeded into existence.  The world churned with particles, all so hot that they zipped through space at nearly the speed of light. 

For some inexplicable reason, for every billion pairs of matter and anti-matter, one extra particle of matter appeared.  When matter and anti-matter began to find each other and explode, this billionth extra bit remained.

This small surplus formed all of stars in the sky.  The planets.  Ourselves.

#

Meditation is like blinking.  You close your eyes, time passes, then you open your eyes again.  Meditation is like a blink where more time passes.

But more is different.

#

Our early universe was filled with the smallest possible particles.  Quarks, electrons, and photons.  Because their energy was so high, they moved too fast to join together.  Their brilliant glow filled the sky, obscuring our view of anything that had happened before.

As our universe expanded, it cooled.  Particles slowed down.  Three quarks and an electron can join to form an atom of hydrogen.  Two hydrogen atoms can join to form hydrogen gas.  And as you combine more and more particles together, your creations can be very different from a hot glowing gas.  You can form molecules, cells, animals, societies.

#

When a cloud of gas is big enough, its own gravity can pull everything inward.  The cloud becomes more and more dense until nuclear fusion begins, releasing energy just like a nuclear bomb.  These explosions keep the cloud from shrinking further.

The cloud has become a star.

Nuclear fusion occurs because atoms in the center of the cloud are squooshed too close together.  They merge: a few small atoms become one big atom.  If you compared their weights – four hydrogens at the start, one helium at the finish – you’d find that a tiny speck of matter had disappeared.  And so, according to E equals M C squared, it released a blinding burst of energy.

The largest hydrogen bomb detonated on Earth was 50 megatons – the Kuz’kina Mat tested in Russia in October, 1961.  It produced a mushroom cloud ten times the height of Mount Everest.  This test explosion destroyed houses hundreds of miles away.

The fireball of Tsar Bomba, the Kuz’kina Mat.

Every second, our sun produces twenty billion times more energy than this largest Earth-side blast.

#

Eventually, our sun will run out of fuel.  Our sun shines because it turns hydrogen into helium, but it is too light to compress helium into any heavier atoms.  Our sun has burned for about four billion years, and it will probably survive for another five billion more.  Then the steady inferno of nuclear explosions will end.

When a star exhausts its fuel, gravity finally overcomes the resistance of the internal explosions.  The star shrinks.  It might crumple into nothingness, becoming a black hole.  Or it might go supernova – recoiling like a compressed spring that slips from your hand – and scatter its heavy atoms across the universe.

Planets are formed from the stray viscera of early stars.

Supernova remains. Image by NASA’s Chandra X-Ray Observatory and the European Space Agency’s XMM-Newton.

#

Our universe began with only hydrogen gas.  Every type of heavier atom – carbon, oxygen, iron, plutonium – was made by nuclear explosions inside the early stars.

When a condensing cloud contains both hydrogen gas and particulates of heavy atoms, the heavy atoms create clumps that sweep through the cloud far from its center.  Satellites, orbiting the star.  Planets.

Nothing more complicated than atoms can form inside stars.  It’s too hot – the belly of our sun is over twenty million degrees.  Molecules would be instantly torn apart.  But planets – even broiling, meteor-bombarded planets – are peaceful places compared to stars.

Molecules are long chains of atoms.  Like atoms, molecules are made from combinations of quarks and electrons.  The material is the same – but there’s more of it.

More is different.

Some atoms have an effect on our bodies.  If you inhale high concentrations of oxygen – an atom with eight protons – you’ll feel euphoric and dizzy.  If you drink water laced with lithium – an atom with three protons – your brain might become more stable.

But the physiological effects of atoms are crude compared to molecules.  String fifty-three atoms together in just the right shape – a combination of two oxygens, twenty-one carbons, and thirty hydrogens – and you’ll have tetrahydrocannibol.  String forty-nine atoms together in just the right shape – one oxygen, three nitrogens, twenty carbons, and twenty-five hydrogens – and you’ll have lysergic acid diethylamide.

The effects of these molecules are very different from the effects of their constituent parts.  You’d never predict what THC feels like after inhaling a mix of oxygen, carbon, and hydrogen gas.

#

An amino acid is comparable in scale to THC or LSD, but our bodies aren’t really made of amino acids.  We’re built from proteins – anywhere from a few dozen to tens of thousands of amino acids linked together.  Proteins are so large that they fold into complex three-dimensional shapes.  THC has its effect because some proteins in your brain are shaped like catcher’s mitts, and the cannibinoid nestles snuggly in the pocket of the glove.

Molecules the size of proteins can make copies of themselves.  The first life-like molecules on Earth were long strands of ribonucleic acid – RNA.  A strand of RNA can replicate as it floats through water.  RNA acts as a catalyst – it speeds up the reactions that form other molecules, including more RNA.

Eventually, some strands of RNA isolated themselves inside bubbles of soap.  Then the RNA could horde – when a particular sequence of RNA catalyzed reactions, no other RNA would benefit from the molecules it made.  The earliest cells were bubbles that could make more bubbles.

Cells can swim.  They eat.  They live and die.  Even single-celled bacteria have sex: they glom together, build small channels linking their insides to each other, and swap DNA.

But with more cells, you can make creatures like us.

#

Consciousness is an emergent property.  With a sufficient number of neuron cells connected to each other, a brain is able to think and plan and feel.  In humans, 90 billion neuron cells direct the movements of a 30-trillion-cell meat machine.

Humans are such dexterous clever creatures that we were able to discover the origin of our universe.  We’ve dissected ourselves so thoroughly that we’ve seen the workings of cells, molecules, atoms, and subatomic particles.

But a single human animal, in isolation, never could have learned that much.

Individual humans are clever, but to form a culture complex enough to study particle physics, you need more humans.  Grouped together, we are qualitatively different.  The wooden technologies of Robinson Crusoe, trapped on a desert island, bear little resemblance to the vaulted core of a particle accelerator.

English writing uses just 26 letters, but these can be combined to form several hundred thousand different words, and these can be combined to form an infinite number of different ideas.

More is different.  The alphabet alone couldn’t give anyone insight into the story of your life.

#

Meditation is like a blink where more time passes, but the effect is very different.

Many religions praise the value of meditation, especially in their origin stories.  Before Jesus began his ministry, he meditated for 40 days in the Judaean Desert – his mind’s eye saw all the world’s kingdoms prostrate before him, but he rejected that power in order to spread a philosophy of love and charity. 

Before Buddha began his ministry, he meditated for 49 days beneath the Bodhi tree – he saw a path unfurl, a journey that would let travelers escape our world’s cycle of suffering. 

Before Odin began his ministry, he meditated for 9 days while hanging from a branch of Yggdrasil, the world tree – Odin felt that he died, was reborn, and could see the secret language of the universe shimmering beneath him. 

The god Shiva meditated in graveyards, smearing himself with crematory ash.

At its extreme, meditation is purportedly psychedelic.  Meditation can induce brain states that are indistinguishable from LSD trips when visualized by MRI.  Meditation isolates the brain from its surroundings, and isolation can trigger hallucination.

Researchers have found that meditation can boost our moods, attentiveness, cognitive flexibility, and creativity.  Our brains are plastic – changeable.  We can alter the way we experience the world.  Many of our thoughts are the result of habit.  Meditation helps us change those habits.  Any condition that is rooted in our brain – like depression, insomnia, chronic pain, or addiction – can be helped with meditation.

To meditate, we have to sit, close our eyes, and attempt not to think.  This is strikingly difficult.  Our brains want to be engaged.  After a few minutes, most people experience a nagging sense that we’re wasting time.

But meditation gives our minds a chance to re-organize.  To structure ourselves.  And structure is the property that allows more of something to become different.  Squirrels don’t form complex societies – a population of a hundred squirrels will behave similarly to a population of a million or a billion.  Humans form complex webs of social interactions – as our numbers grew through history, societies changed in dramatic ways.

Before there was structure, our entire universe was a hot soup of quarks and electrons, screaming through the sky.  Here on Earth, these same particles can be organized into rocks, or chemicals, or squirrels, or us.  How we compose ourselves is everything.

#

The easiest form of meditation uses mantras – this is sometimes called “transcendental meditation” by self-appointed gurus who charge people thousands of dollars to participate in retreats.  Each attendee is given a “personalized” mantra, a short word or phrase to intone silently with every breath.  The instructors dole mantras based on a chart, and each is Sanskrit.  They’re meaningless syllables to anyone who doesn’t speak the language.

Any two-syllable word or phrase should work equally well, but you’re best off carving something uplifting into your brain.  “Make peace” or “all one” sound trite but are probably more beneficial than “more hate.”  The Sanskrit phrase “sat nam” is a popular choice, which translates as “truth name” or more colloquially as “to know the true nature of things.”

The particular mantra you choose matters less than the habit – whichever phrase you choose, you should use it for every practice.  Because meditation involves sitting motionless for longer than we’re typically accustomed, most people begin by briefly stretching.  Then sit comfortably.  Close your eyes.  As you breathe in, silently think the first syllable of your chosen phrase.  As you breathe out, think the second.

Repeating a mantra helps to crowd out other thoughts, as well as distractions from your environment.  Your mind might wander – if you catch yourself, just try to get back to repeating your chosen phrase.  No one does it perfectly, but practice makes better.  When a meditation instructor’s students worried that their practice wasn’t good enough, he told them that “even on a shallow dive, you still get wet.”

In a quiet space, you might take a breath every three to six seconds.  In a noisy room, you might need to breathe every second, thinking the mantra faster to block out external sound.  The phrase is a tool to temporarily isolate your mind from the world.

Most scientific studies recommend you meditate for twenty minutes at a time, once or twice a day, each and every day.  It’s not easy to carve out this much time from our daily routines.  Still, some is better than nothing.  Glance at a clock before you close your eyes, and again after you open them.  Eventually, your mind will begin to recognize the passage of time.  After a few weeks of practice, your body might adopt the approximate rhythm of twenty minutes.

Although meditation often feels pointless during the first week of practice, there’s a difference between dabbling and a habit.  Routine meditation leads to benefits that a single experience won’t.

More is different.

On ‘The Overstory.’

On ‘The Overstory.’

We delude ourselves into thinking that the pace of life has increased in recent years.  National news is made by the minute as politicians announce their plans via live-televised pronouncement or mass-audience short text message.  Office workers carry powerful computers into their bedrooms, continuing to work until moments before sleep.

But our frenzy doesn’t match the actual pace of the world.  There’s a universe of our own creation zipping by far faster than the reaction time of any organism that relies on voltage waves propagating along its ion channels.  Fortunes are made by shortening the length of fiberoptic cable between supercomputer clusters and the stock exchange, improving response times by fractions of a second.  “Practice makes perfect,” and one reason the new chess and Go algorithms are so much better than human players is that they’ve played lifetimes of games against themselves since their creation.

640px-IFA_2010_Internationale_Funkausstellung_Berlin_18We can frantically press buttons or swipe our fingers across touch screens, but humans will never keep up with the speed of the algorithms that recommend our entertainment, curate our news, eavesdrop on our conversations, guess at our sexual predilections, condemn us to prison

And then there’s the world.  The living things that have been inhabiting our planet for billions of years – the integrated ecosystems they create, the climates they shape.  The natural world continues to march at the same stately pace as ever.  Trees siphon carbon from the air as they grasp for the sun, then fall and rot and cause the Earth itself to grow.  A single tree might live for hundreds or thousands of years.  The forests in which they are enmeshed might develop a personality over millions.

Trees do not have a neural network.  But neither do neurons.  When simple components band together and communicate, the result can be striking.  And, as our own brains clearly show, conscious.  The bees clustering beneath a branch do not seem particularly clever by most of our metrics, but the hive as a whole responds intelligently to external pressures.  Although each individual has no idea what the others are doing, they function as a unit.

Your neurons probably don’t understand what they’re doing.  But they communicate to the others, and that wide network of communication is enough.

Root_of_a_TreeTrees talk.  Their roots intertwine – they send chemical communiques through symbiotic networks of fungal mycelia akin to telephones.

Trees talk slowly, by our standards.  But we’ve already proven to ourselves that intelligence could operate over many orders of temporal magnitude – silicon-based AI is much speedier than the chemical communiques sent from neuron to neuron within our own brains.  If a forest thought on a timescale of days, months, or years, would we humans even notice?  Our concerns were bound up in the minute by minute exigencies of hunting for food, finding mates, and trying not to be mauled by lions.  Now, they’re bound up in the exigencies of making money.  Selecting which TV show to stream.  Scoping the latest developments of a congressional race that will determine whether two more years pass without the slightest attempt made to avoid global famine.

In The Overstory, Richard Powers tries to frame this timescale conflict such that we Homo sapiens might finally understand.  Early on, he presents a summary of his own book; fractal-like, this single paragraph encapsulates the entire 500 pages (or rather, thousands of years) of heartbreak.

image (2)He still binges on old-school reading.  At night, he pores over mind-bending epics that reveal the true scandals of time and matter.  Sweeping tales of generational spaceship arks.  Domed cities like giant terrariums.  Histories that split and bifurcate into countless parallel quantum worlds.  There’s a story he’s waiting for, long before he comes across it.  When he finds it at last, it stays with him forever, although he’ll never be able to find it again, in any database.  Aliens land on Earth.  They’re little runts, as alien races go.  But they metabolize like there’s no tomorrow.  They zip around like swarms of gnats, too fast to see – so fast that Earth seconds seem to them like years.  To them, humans are nothing but sculptures of immobile meat.  The foreigners try to communicate, but there’s no reply.  Finding no signs of intelligent life, they tuck into the frozen statues and start curing them like so much jerky, for the long ride home.

Several times while reading The Overstory, I felt a flush of shame at the thought of how much I personally consume.  Which means, obviously, that Powers was doing his work well – I should feel ashamed.    We are alive, brilliantly beautifully alive, here on a magnificent, temperate planet.  But most of us spend too little time feeling awe and too much feeling want.  “What if there was more?” repeated so often that we’ve approached a clear precipice of forever having less.

In Fruitful Labor, Mike Madison (whose every word – including the rueful realization that young people today can’t reasonably expect to follow in his footsteps – seems to come from a place of earned wisdom and integrity, a distinct contrast from Thoreau’s Walden, in my opinion) asks us to:

image (3)Consider the case of a foolish youth who, at age 21, inherits a fortune that he spends so recklessly that, by the age of 30, the fortune is dissipated and he finds himself destitute.  This is more or less the situation of the human species.  We have inherited great wealth in several forms: historic solar energy, either recent sunlight stored as biomass, or ancient sunlight stored as fossil fuels; the great diversity of plants and animals, organized into robust ecosystems; ancient aquifers; and the earth’s soil, which is the basis for all terrestrial life.  We might mention a fifth form of inherited wealth – antibiotics, that magic against many diseases – which we are rendering ineffective through misuse.  Of these forms of wealth that we are spending so recklessly, fossil fuels are primary, because it is their energy that drives the destruction of the other assets.

What we have purchased with the expenditure of this inheritance is an increase in the human population of the planet far above what the carrying capacity would be without the use of fossil fuels.  This level of population cannot be sustained, and so must decline.  The decline could be gradual and relatively painless, as we see in Japan, where the death rate slightly exceeds the birth rate.  Or the decline could be sudden and catastrophic, with unimaginable grief and misery.

In this context, the value of increased energy efficiency is that it delays the inevitable reckoning; that is, it buys us time.  We could use this time wisely, to decrease our populations in the Japanese style, and to conserve our soil, water, and biological resources.  A slower pace of climate change could allow biological and ecological adaptations.  At the same time we could develop and enhance our uses of geothermal, nuclear, and solar energies, and change our habits to be less materialistic.  A darker option is to use the advantages of increased energy efficiency to increase the human population even further, ensuring increasing planetary poverty and an even more grievous demise.  History does not inspire optimism; nonetheless, the ethical imperative remains to farm as efficiently as one is able.

The tragic side of this situation is not so much the fate of the humans; we are a flawed species unable to make good use of the wisdom available to us, and we have earned our unhappy destiny by our foolishness.  It is the other species on the planet, whose destinies are tied to ours, that suffer a tragic outcome.

Any individual among us could protest that “It’s not my fault!”  The Koch brothers did not invent the internal combustion engine – for all their efforts to confine us to a track toward destitution and demise, they didn’t set us off in that direction.  And it’s not as though contemporary humans are unique in reshaping our environment into an inhospitable place, pushing ourselves toward extinction.

Heck, you could argue that trees brought this upon themselves.  Plants caused climate change long before there was a glimmer of a chance that animals like us might ever exist.  The atmosphere of the Earth was like a gas chamber, stifling hot and full of carbon dioxide.  But then plants grew and filled the air with oxygen.  Animals could evolve … leading one day to our own species, which now kills most types of plants to clear space for a select few monocultures.

As Homo sapiens spread across the globe, we rapidly caused the extinction of nearly all mega-fauna on every continent we reached.  On Easter Island, humans caused their own demise by killing every tree – in Collapse, Jared Diamond writes that our species’ inability to notice long-term, gradual change made the environmental devastation possible (indeed, the same phenomenon explains why people aren’t as upset as they should be about climate change today):

image (4)We unconsciously imagine a sudden change: one year, the island still covered with a forest of tall palm trees being used to produce wine, fruit, and timber to transport and erect statues; the next year, just a single tree left, which an islander proceeds to fell in an act of incredibly self-damaging stupidity. 

Much more likely, though, the changes in forest cover from year to year would have been almost undetectable: yes, this year we cut down a few trees over there, but saplings are starting to grow back again here on this abandoned garden site.  Only the oldest islanders, thinking back to their childhoods decades earlier, could have recognized a difference. 

Their children could no more have comprehended their parents’ tales of a tall forest than my 17-year-old sons today can comprehend my wife’s and my tales of what Los Angeles used to be like 40 years ago.  Gradually, Easter Island’s trees became fewer, smaller, and less important.  At the time that the last fruit-bearing adult palm tree was cut, the species had long ago ceased to be of any economic significance.  That left only smaller and smaller palm saplings to clear each year, along with other bushes and treelets. 

No one would have noticed the falling of the last little palm sapling.

512px-Richard_Powers_(author)Throughout The Overstory, Powers summarizes research demonstrating all the ways that a forest is different from – more than – a collection of trees.  It’s like comparing a functioning brain with neuronal cells grown in a petri dish.  But we have cut down nearly all our world’s forests.  We can console ourselves that we still allow some trees to grow – timber crops to ensure that we’ll still have lumber for all those homes we’re building – but we’re close to losing forests without ever knowing quite what they are.

Powers is furious, and wants for you to change your life.

You’re a psychologist,” Mimi says to the recruit.  “How do we convince people that we’re right?”

The newest Cascadian [a group of environmentalists-cum-ecoterrorists / freedom fighters] takes the bait.  “The best arguments in the world won’t change a person’s mind.  The only thing that can do that is a good story.”