On scientific misconceptions, Eurocentrism, and the evolution of skin color.

On scientific misconceptions, Eurocentrism, and the evolution of skin color.

There’s a story that many scientists tell about the evolution of human skin color.

The story goes roughly like this:

In the beginning, our ancestors had dark fur and lightly pigmented skin. This was perhaps six million years ago? Over time, our ancestors lost their fur and needed darkly pigmented skin to protect themselves from the harsh light of the sun.

Later, some people left their ancestral homeland. Migratory humans covered the globe. As humans traveled farther from the equator, they evolved light skin again – otherwise they’d have too little vitamin D.


In Joanne Cole (author) & Bruce Degen (illustrator)’s The Magic School Bus Explores Human Evolution (which is surprisingly good! You can read my review here), this story is told in a single panel.

Variants on this story percolated through the scientific literature for years, but the version above is derived largely from the work of anthropologists Nina Jablonski & George Chaplin. In their article “The Evolution of Skin Coloration,” they write that “As hominins migrated outside of the tropics, varying degrees of depigmentation evolved to permit ultraviolet-light-induced synthesis of vitamin D.

This story is often treated as accepted science, even by researchers who describe human evolution from an explicitly anti-racist perspective. For example, in A Brief History of Everyone Who Ever Lived, Adam Rutherford writes that “The unglamorous truth is that there are but a handful of uniquely human traits that we have clearly demonstrated are adaptations evolved to thrive in specific geographical regions. Skin color is one. The ability to digest milk is another, which fits perfectly with the emergence of dairy farming.

However, this story about the evolution of human skin color isn’t supported by the actual data. Instead, it’s based on Eurocentric misconceptions about what sort of environment and lifestyle are “normal” for human beings.


Unquestionably, darkly pigmented skin can protect humans from sunlight. And sunlight is dangerous! You should wear sunscreen. (I’m sure that somebody has told you this already.)

But the benefits of light skin have been vastly overstated by (light-skinned) researchers. And a quick glance at the data is enough to demonstrate the major flaws in the evolutionary story I described above.

That same page of The Magic School Bus Explores Human Evolution includes a world map with a (again, surprisingly accurate!) depiction of the paths that ancient humans took to populate the planet.

Looking at those red arrows, you’ll see several occasions when groups of humans migrated farther from the equator. The people who settled in France, Korea, and Patagonia had all reached similar latitudes. (As did the humans who settled in New Zealand, but they only arrived about 800 years ago, which probably isn’t enough time to expect dramatic shifts in skin color. Especially given the likelihood of continued gene flux across latitudes – by the time anyone reached New Zealand, people were probably traveling to and fro by boat often, rather than forming an isolated community.)

If the above story about the evolution of human skin color were correct, we’d expect that indigenous people from France, Korea, and Patagonia would all have similar skin color. Indeed, artist Gail McCormick worked closely with Jablonski & Chaplin to create a cut-paper map depicting the indigenous skin color that their story predicts for various regions.

But this map doesn’t match the skin color we actually see from humans across the globe. The indigenous people of France evolved lightly pigmented skin. The indigenous people of Korea, Patagonia, and North America did not.

Jablonski & Chaplin arrived at their conclusion because they considered very few human populations; Figure 4 from their paper, which I’ve included below, depicts in white all the regions of the globe that they left out of their data set.

Each human migration was another natural experiment: Does migration away from the equator result in lighter skin?

For the people migrating into Europe, the answer is pretty unambiguously “yes.” We have evidence of dramatic, rapid selection for genes that result in lighter skin among these people. Many of the gene variants responsible for lightly pigmented skin in Europeans had been long present among ancient humans living in Africa (as documented by Crawford & colleagues in “Loci Associated with Skin Pigmentation Identified in African Populations”), but then spread rapidly among Europeans approximately 4,000 years ago (as documented by Mathieson & colleagues in “Genome-Wide Patterns of Selection in 230 Ancient Eurasians”).

The dramatic selection for genes associated with lightly pigmented skin in Europe occurred within the span of about a thousand years, and occurred about 30,000 or 40,000 years after Homo sapiens first populated that region.


Among the various groups of ancient humans who migrated toward similar latitudes, only the indigenous people of Northern Europe evolved lightly pigmented skin. This trait spread rapidly (by evolutionary standards) about 4,000 years ago.

This timing is similar to the spread of lactose tolerance genes among the people of Northern Europe. Most animals, including most humans, can’t digest milk in adulthood. Even among humans who live in cultures where cows’ milk is a major component of the diet, many people can’t digest it and will experience routine gastrointestinal distress and diarrhea. (Which is serious! Although a few bottles of Gatorade would save their lives, diarrhea still kills about 2 million people per year. Among ancient humans, diarrhea could easily cause deaths by malnutrition, dehydration, or increased susceptibility to disease.)

For their 2022 study “Dairying, Diseases, and the Evolution of Lactase Persistence in Europe,” Evershed & colleagues looked at food residues stuck to ancient pottery and found that cows’ milk has been a major part of European diets for approximately 9,000 years. But these people couldn’t digest milk well. For their 2020 study “Low Prevalence of Lactase Persistence in Bronze Age Europe Indicates Ongoing Strong Selection over the Last 3,000 Years,” Burger & colleagues found that most of the dead warriors from an ancient European battleground did not have the genes for lactose tolerance.

And yet, just before the Europeans’ vast spree of kidnapping, abduction, and resource extraction led to massive amounts of human migration (which began approximately 500 years ago), nearly 95% of the people living in Europe had the genes for lactose tolerance.

That’s a huge change, and really fast! Which should make us realize that something strange might be going on with this group of people – they must’ve had particularly atrocious diets. Which helps explain why they’d need lighter skin.

After all, vitamin D is a dietary nutrient. If you get enough vitamin D from your food, there’s no downside to darkly pigmented skin. And, as David Graeber & David Wengrow describe comically in The Dawn of Everything (“We might call this the ‘all the bad spots are taken!’ argument”), most ancient humans chose to live in places where they could find food, water, and shelter. Otherwise they’d migrate.

Yet, in a savage twist of fate, the same culture that generally resulted in low-quality diets – farming – also made migration more difficult. People stayed near their farms, with their insufficient amounts of low-quality food, because that way they’d at least have something.

I’ve written previously about the social and environmental repercussions of ancient farming – a lovely essay, in my opinion! – but in order to understand the evolution of skin color, all we really need to know is the impact of farming on human health. As James Scott writes in Against the Grain,

Evidence for the relative restriction and impoverishment of early farmers’ diets comes largely from comparisons of skeletal remains of farmers with those of hunter-gatherers living nearby at the same time. The hunter-gatherers were several inches taller on average. This presumably reflected their more varied and abundant diet. It would be hard, as we have explained, to exaggerate that variety. Not only might it span several food webs – marine, wetland, forest, savanna, arid – each with its seasonal variation, but even when it came to plant foods, the diversity was, by agricultural standards, staggering. The archaeological site of Abu Hureyra, for example, in its hunter-gatherer phase, yielded remains from 192 different plants, of which 142 could be identified, and of which 118 are known to be consumed by contemporary hunter-gatherers.

The crops and livestock raised by farmers in Northern Europe provide very little vitamin D. But ancient humans often settled in areas where they could catch fish, which provides plenty of dietary vitamin D (as measured by Schmid & colleagues for their study “Natural Vitamin D Content in Animal Products”).

As it happens, if the picture from The Magic School Bus Explores Human Evolution were an accurate depiction of those people’s diet (not to mention their clothes, exposing quite a bit of skin!), they’d probably experience very little selective pressure for lighter skin.


Whenever we discuss evolution, it’s important to remember that natural selection doesn’t enrich for traits that are “better.” There’s rarely any such thing as “better.” Consider: the ancestors of starfish had brains! But – given their particular environment – their lineage was more successful after evolving to be brainless. Or: the ancestors of penguins could fly! But – given their particular environment – their lineage was more successful after evolving to be flightless.

We humans have long legs and arched feet that are great for running, but these same long legs and stubby toes make us so much worse at climbing trees than a chimpanzee. It’s a trade-off. (And a trade-off that I’m pretty happy with, given that I love to run and am afraid of heights.)

Lightly pigmented skin carries a very clear cost – UV penetration with its attendant folate degradation, skin cancers, and discomfort – and only carries a compensatory benefit at extreme northern or southern latitudes among ancestral populations with diets low in vitamin D.

We do ourselves a major disservice – and perpetuate Eurocentric racism – if we consider the selective pressures encountered by one particular group of Homo sapiens to be the default against which all others are measured.

On the evolution of skin color.

On the evolution of skin color.

Our criminal justice system ensnares people from all walks of life.  Occasionally we’ll hear about the arrest of a wealthy sociopath with a penchant for child abuse, like Jared Fogel or Jeffrey Epstein.

But, let’s face it.  Justice in this country isn’t applied fairly.  If you’re wealthy, your behavior has to be a lot more egregious for you to reap the same punishments as a poor person.  If you look white, your behavior has to a lot more egregious for you to reap the same punishments as a black person.

There’s abundant statistical evidence to back up these claims.  But the Supreme Court won’t allow any particular individual to petition for reduced punishment based on the statistical evidence.  After all, prosecutors, judges, and juries ostensibly came to their decisions based on the unique details of each individual case.  Just because people who resemble you are often treated unfairly doesn’t mean that you were treated unfairly, too. 

Or so ruled our Supreme Court.

Because we apply punishment so inequitably, our jails and prisons are full of people who’ve been treated poorly by the world.  Compared to the average citizen, people in prison grew up with less money, received less education, experienced more trauma.  And, no matter what people’s earlier lives were like, if they’re in prison, they’re not being treated well now.

So they have a lot of justifiable grievances against the dominant political, cultural, and religious beliefs of our country.  Punished unfairly by their fellow Christians, people sour on Christianity.  Inside walls where the demographics make it blatantly obvious that our laws are enforced in a malignantly racist way, racial tensions boil.

At Pages to Prisoners, an organization that sends free books to people inside, we get requests for stuff about Norse mythology, Odinism, and Asatru.  Lots of folks ask for material to learn foreign languages – people want to feel like they’ve accomplished something during their time in prison – but I always feel skeptical when somebody wants help learning Icelandic.

Not that there’s anything wrong with Icelandic.  And Norse mythology is cool!  Unfortunately, a gaggle of violent white supremacists decided that Norse mythology should be the basis for their religion.  Starting in the 1970s, a right-wing racist from Florida began sending “Odinist” publications into prisons.

A photograph showing a book page in Icelandic.

During the thirteenth century, Christian scholars transcribed many of the old Norse myths so that they could better understand the literary allusions of old Icelandic poetry.  But they didn’t record anything about ancient religious practice.  We barely have any information about most ancient pagan beliefs.  Anyone who wants to adopt a pre-Christian European religion now – whether it’s Wicca, Druidism, Odinism, or Celtic polytheism – is basically forced to make things up.

I have nothing against religious invention.  All religions were made by human beings – there’s no a priori reason why a religion created long ago, by people who understood much less about the world than we do now, would be better than something you invent today.  Sure, ancient religions have been tested by time, suggesting that they possess virtues that their practitioners found helpful over the years, but most ancient religions have their problems, too.  Inaccurate cosmologies, scattered hateful passages in their texts, that sort of thing.

So I like the idea of neo-paganism.  You want to find a clearing in the woods and do some moonlit dancing?  You’d rather worship a feminine generative force than a norm-enforcing patriarchal deity?  You want to exalt nature as a hearth to be protected rather than a resource to be exploited?  Go right ahead!  All of that sounds pretty great to me.

A Wiccan-style gathering of artifacts including a statue of a seated green goddess, her pregnant belly painted as the earth; mums; a chalice; a string of green beads; a stoppered rectangular prism bottle; and a candleholder appearing to be carved of wood, again of a pregnant woman with hands holding her belly.

Unfortunately, neo-paganism as it’s currently practiced in prison tends to be pretty hateful.

That’s why I’ve been working on a set of anti-racist pamphlets about Norse mythology.  Currently, when people ask for The Poetic Edda or whatever, we send a friendly letter saying that we don’t have it, and also that we generally don’t stock that sort of thing because it runs afoul of our anti-hate policy. 

But the Norse myths are certainly no more hateful than Biblical myths, and we send plenty of those.  The main difference is that centuries of continued Christian practice have created a scaffolding of gentler beliefs around the stories in the Bible. 

The text of Psalm 137 states that “Happy shall he be, that taketh and dasheth thy little ones against the stones.”  But the text is a tool, not the entirety of the religion.  The practice of Christianity frowns upon the murder of any human infant.  Whether you like the kid’s parents or not.

A sun-dappled photograph of a page of the Bible.

We’d be better off if Pages to Prisoners could send warm-hearted material about Norse mythology to people.  Sure, you can interpret the Norse myths as endorsing a war-mongering death cult.  You can interpret the Old Testament that way, too.  But you can also interpret the Norse myths as environmentalist.  Feminist.  Supporting the pursuit of knowledge.  Judging strangers based upon their merits, not their appearance.

Because contemporary Odinism is so entangled with white supremacy, though, our pamphlet will have to address skin color and genetic heritage directly.  It’s a fraught topic.  Lots of people in the U.S. don’t like any discussion of evolution.  Some people feel squigged out when they learn that contemporary birds evolved from the same set of common ancestors as the dinosaurs.  And that’s far less emotionally charged than a description of human evolution. 

A photograph of a model dinosaur, complete with feathers.

Plus, skin color still has huge implications for how people are treated in the United States.  Consider, um, those prison demographics I cited above. And so discussions about the evolution of epidermal melanin concentrations are especially tense.  Although the underlying biology is simple – some places have more sunlight than others! – because people think it matters, it does.

I’ve found that these conversations are actually a decent way to get people interested in the study of archeology and biology, though.  After we’ve discussed this in jail, people have asked me to bring research papers and textbooks so that they could learn more.

Whenever two groups of an organism stop mating with each other, they’ll slowly drift apart.  This rift might occur because the groups became physically separated from each other.  Maybe one group migrated to an island.  In contemporary times, maybe the groups were separated when humans built a new highway bisecting a habitat. Maybe two sets of similar-looking insects mate apart because they’re eating fruits that ripen at different times.

Or the groups might stop mating with each other because a chance mutation caused members of one group to want their sexual partners to smell a certain way.  Various species of stickleback are able to interbreed – they identify other members of their kind based on smell.  But water pollution has overwhelmed the fishes’s senses, leading the fish to mate indiscriminately.

A photograph of a three-spined stickleback fish.

If humans hadn’t polluted their waters, though, these sticklebacks would have drifted farther and farther apart until it became impossible for them to interbreed.  No matter how many sense-suppressing chemicals we dumped.

We don’t know what caused the initial rift between our ancestors and the ancestors of contemporary chimpanzees.  About 4 million years ago, though, these groups stopped having children together.  By 2 millions years ago (at least 100,000 generations later), these groups looked quite different from each other.  Although it’s possible that these organisms could have still mated with each other and raised viable progeny, they rarely did.

One group of these creatures, which included our ancestors, had a tucked pelvis and mostly upright posture.  This allowed for a good vantage while scavenging and, eventually, hunting.  The other group, which includes chimpanzees’ ancestors, mostly moved on all fours.  This body plan results in fewer mothers dying during childbirth.  As ever, there are trade-offs to be made.

Image shows the upright skeletal postures of gibbons, humans, chimpanzees, gorillas, and orangutans.

Up until about 2 million years ago, all our ancestors lived in Africa.  But then they began to migrate.  Over the next million years, they explored much of the globe.  By about 500,000 years ago, half a dozen different types of humans lived in Africa, Europe, and Asia.  The difference between one population to the next was not like the racial differences among contemporary humans, but more like the difference between lions and tigers, or between polar bears and brown bears.  Scientists describe them as distinct species.  Although they were similar enough that they could have sex and raise children together, they rarely did – they lived in distinct parts of the world and had begun to evolve adaptations to their specific environments.

Evolution isn’t easy.  Nor is it quick.  Just because a certain trait would be advantageous doesn’t mean that creatures will acquire it.  In the desert, it would help to have adaptations for water retention like camels, or long ears like jackrabbits to cool the blood.  But a trait can only spread after a random mutation creates it.  And, even if a trait is very helpful, if only one individual is born with the adaptation, there’s no guarantee that it will have enough children for the benefit to spread through the population. 

Once a beneficial trait has a good toe-hold – present in perhaps 1% to 10% of the population – then we can expect it to flourish.  But below that amount, even great adaptations might die off due to bad luck.  That’s why it takes so many generations – tens of thousands, or hundreds of thousands – before you see organisms become drastically better suited for the environment.  Even when scientists do directed evolution experiments in the lab, it takes about this many generations for a population of bacteria to evolve ways to consume a new food source, for instance.

By 500,000 years ago, the various species of humans were recognizably different.  Denisovans lived in the mountains, and their hemoglobin genes allowed them to avoid altitude sickness.  Their blood was less likely to clot and cause strokes, and they could extract more oxygen from the thin air.  These are incredibly beneficial traits.  Even though the Denisovans went extinct about 40,000 years ago, about 40% of people currently living in Tibet have copies of the Denisovan hemoglobin gene.

Our ancestors migrated east to the Denisovans’ homeland just before the Denisovans went extinct.  To be perfectly honest, we probably killed them.  But before or during this genocide, a few of our ancestors must have had sex with the locals.  And then the bi-racial children of these Homo sapiens / Denisovan couplings must have been significantly better off for the gene to spread so widely.

The Neanderthal lived at high latitude.  Over many generations, their average skin color became paler.  In part, this was probably due to the lack of selective pressure.  Think about a dodo – there was no advantage for these birds to lose their fear of humans.  But, because the dodos were living on an island that no humans traveled to, there was also no harm in the birds becoming fearless.

A sculpture of a dodo.

Dodos lost a beneficial trait – fear – because their fear wasn’t actively needed.  It’s kind of like the airbags in an old car.  If your car’s engine goes bad, you’ll notice right away.  Turn the key, hear it sputter.  You use the engine every time you drive.  But your airbags could get worse without you noticing … and then, in the moment when they’re needed, they won’t deploy.

Humans living near the equator need epidermal melanin.  If you don’t have enough melanin, you’ll get sunburns, which exacerbate the risk of infection and dehydration; you’ll suffer radiation-induced DNA damage, which leads to skin cancer; and you’ll lose folate, which means that pregnant women will have more birth defects.

The most recent ancestors that humans and chimpanzees shared in common had pale skin.  Contemporary chimpanzees are still pale.  They can afford to be – their fur protects them from the sun.  But our ancestors lost their fur, probably so that they didn’t overheat while running, and this led to the evolution of dark skin.

High concentrations of epidermal melanin distinguished humans from the other apes.

As humans migrated to higher latitudes, though, they gradually lost this indicator of their humanity.  Because the sunlight was less intense, there was less selective pressure.  Humans could lose their epidermal melanin in the same way that dodos lost their fear – not because it was helpful to go without it, but because the trait went untested in their day to day lives.  They had no way to “realize” how important it was. 

Your airbags aren’t helpful until you crash.  And then they’ll either deploy and save you, or they won’t.

Now, it’s possible that the Neanderthal also experienced some positive selective pressure on their skin color as they migrated north.  Over thousands of generations, the Neanderthals may have benefited from paler skin because it increased their production of vitamin D.  We don’t know for certain that the Neanderthal felt any evolutionary pressure to have more vitamin D – after all, contemporary Inuit people live at very high latitudes but still have a lot of epidermal melanin – but it’s true that vitamin D deficiency is a big risk among people with crummy diets.

In the past, hunter / gatherers typically ate much healthier, more varied diets than farmers.  When humans began to farm, they would mostly eat the one type of plant that they cultivated, rather than the wide mix of plants that could be found growing wild.  And when Homo sapiens farmers migrated to northern Europe, their diets were so poor that they even developed loss-of-function mutations in a cholesterol synthesis gene, probably so that they’d have higher concentrations of vitamin D precursors.  Among these people, pale skin was probably a big advantage.  They’d be ready for the cloudless days when their homeland’s feeble sunlight was enough to make some vitamin D.

Pieter Bruegel the Elder’s The Harvesters.

Around 40,000 years ago, our planet’s most recent ice age ended.  The world began to warm, and glaciers retreated from Europe.  By then, a group of humans living in Africa were recognizably Homo sapiens.  These were our ancestors.  Every human alive today – no matter what you look like or where your family is from – is descended from this group of people from Africa.  They lived in tribes of twenty to a hundred people, had darkly pigmented skin, made art, and spoke complex languages.

As the world warmed, some of these Homo sapiens began to migrate.  These journeys occurred over many generations.  Some tribes stayed in Africa; some tribes ventured north into Europe; others moved east toward Asia.  As they traveled, they encountered the humans who already lived in those places.  As I’ve mentioned, the newcomers occasionally had sex and raised children with the natives.  They probably also killed a lot of them.  Unfortunately, we Homo sapiens don’t have the best reputation for treating strangers well. 

Interbreeding happened rarely enough that most people living today have about 99% Homo sapiens DNA.  Some people, especially if their families are from Africa, have essentially 100% Homo sapiens DNA.  At other extreme, even people whose families are from Europe have 96% or more Homo sapiens DNA.

Among people living in Tibet, the Denisovan hemoglobin gene is common, but most other Denisovan genes are gone.

Everyone living today is human.  We are all Homo sapiens, all the same species.  But some of us do carry vestiges of the other human populations whom our ancestors killed.

Like the Neanderthal before them, the Homo sapiens who ventured north into Europe began to lose their epidermal melanin.  People who hunted and fished probably became paler simply because there was less risk of sun damage.  Remember, this didn’t happen all at once.  Average skin color would change only over the course of hundreds or even thousands of generations, not during the course of a single journeying Homo sapiens’s lifetime. 

Our ancestors spent almost all their time outdoors, which is why even dark-skinned people could probably synthesize plenty of vitamin D.  Among contemporary humans, vitamin D deficiency is such a big problem because we spend too much time inside.  As I type this, I’m sitting at a table in the YMCA snack room, lit up by flickering fluorescent bulbs.  This low-quality light won’t help me make vitamin D.

Instead, I take a daily supplement.  But that doesn’t come near matching the health and psychological benefits of time outdoors.

Perhaps it’s worth mentioning that people in jail – places not known for providing a rich, high-quality, varied diet – typically get to go outside no more often than once a week.  At our local jail, their hour of “outdoor rec” occurs in a little courtyard at the top of the jail, a cement space covered with a chain-linked fence.  Outdoor rec often happened at night – a friend who was recently released told me that “This was still nice.  You could see some stars.  And there’s that restaurant, Little Zagrib, down the street?  Sometimes we’d smell foods from their kitchen.”

Treating people that way is unlikely to help them get better.

Blue sky and white cirrus clouds as viewed through coiled razor wire atop a barbed-wire fence.

But back to our migrants!  Descendants of these pale-skinned Homo sapiens continued to explore new territories.  Some reached North America about 12,000 years ago, and some of their descendants continued farther, all the way to South America. 

As people traveled – journeys that lasted many generations – they continued to evolve.  Indeed, skin color was a trait that came repeatedly under selective pressure.  As people migrated south into the Americas, they were living progressively closer and closer to the equator.  Compared to their grandparents, they were bombarded by more intense sunlight.  They needed more epidermal melanin.

This is a process that takes a long time.  A family might have six kids; maybe the two palest kids get sunburned, which makes it more likely that they’ll develop skin infections and die before they have children of their own.  If this happens again and again, among many different families, then eventually the whole population will wind up with slightly darker skin.

A prediction for the distribution of human skin colors based on the intensity of ultraviolet light present at each latitude. Figure from Nina Jablonski & George Chaplin, “The Evolution of Human Skin Color,” in Journal of Human Evolution, 2000.
This figure depicts the (limited) data we have on the distribution of human skin colors before the modern era’s horrific set of forced migrations. In this image, white-colored regions indicate an absence of data, not low concentrations of epidermal melanin among a region’s prehistoric population. Figure from Nina Jablonski & George Chaplin, “The Evolution of Human Skin Color,” in Journal of Human Evolution, 2000.

Because human skin color has changed during each of the many prehistoric migrations, it isn’t correlated with other traits.  As we entered the modern era, people’s skin color was lighter or darker based on how close to the equator their recent ancestors lived.  But human populations migrated so often that there were many different groups, each with unique cultural and genetic heritages, living at every latitude.  Because skin color is so closely linked to latitude, this means many different groups shared similar concentrations of epidermal melanin.  And there’s no evolutionary pressure linking a trait that protects skin to brain size or intelligence.

As it happens, there are major events known to have caused a decrease in human brain size (and probably intelligence).  After all, human brains are costly.  Even though there’s a benefit to being clever, there’s also been constant evolutionary pressure against large brains.

Large brains kill mothers.  Because humans walk upright, childbirth is riskier for human mothers than for other primates.  Our posture constrains the width of our hips – both male and female – but a baby’s whole head has to pass through that narrow passageway.

Having children is so risky that we evolved to give birth about 3 months prematurely.  Human gestation takes about a year, but most mothers give birth after only 9 months.  This allows a baby’s head to continue to grow outside the mother’s body, but human babies are totally helpless at birth.  We have to be very devoted parents to keep them alive.

Also, our brains require a lot of fuel.  Human evolution occurred over such a long, long time that our ancestors lived through many droughts and calamities.  During the hard years, our ancestors would struggle to get enough to eat, and a large brain makes that struggle harder. 

A person with a smaller brain requires fewer calories, making that person less likely to starve in lean times.  And, again, it’s worth remembering that evolution happens over so many generations, among so many families, that even small changes can add up.  If mothers who have small-headed children can survive a dozen pregnancies, but mothers with large-headed children die after only a few, then the trend will be to have people with smaller brains.  Intelligence has to be extremely beneficial to overcome this sort of evolutionary pressure.

Similarly, if people with small brains are more likely to survive and raise children during droughts, then, after hundreds of generations of people who have survived dozens of extended droughts, you’d expect to see more people with small brains.

Many of us have the bad habit of reflexively thinking about evolution as the gradual development of more and more complexity.  But that’s not what it is.  Evolution is the process by which things that are better suited for their environment become more abundant.  If the environment is a hard place to live in, then evolution tends to push for more and more simplicity.  When it’s hard to get enough calories, why waste calories on anything that you don’t really need?

Starfish are descended from organisms that had brains.  But starfish are brainless.  The ancestral starfish that weren’t wasting energy thinking were more likely to survive.

Which should make you feel pretty good about your own brain, actually.  Your ability to think is so fabulous that your ancestors evolved larger and larger brains … even though these brains were sometimes causing us to starve to death, or kill our mothers.

That’s a valuable thing you’ve got inside your skull.  It cost our ancestors so much for you to be able to have it.

But, right.  Because the cost was so high, human brains did shrink sometimes.  Like when we first domesticated dogs.  Our ancestors began living with dogs about 30,000 years ago.  Dogs were willing to do some thinking for us – they’d sniff out prey and listen for predators at night.  Based on the behavior of my family’s dogs, I bet that they licked the faces of screaming children.  Maybe that doesn’t seem essential for survival, but I certainly appreciate every time our dogs calm the kids down.

Because we could slough off a few mental tasks – I don’t need to be so observant if the dog will help me hunt – our brains could shrink, making childbirth less deadly and reducing the caloric cost of maintaining our minds each day.

Pottery shard depicting a boar hunt in ancient Greece.

When humans switched from hunting and gathering to agriculture, our brains shrunk further.  A hunter / gatherer has to know so much about every plant and animal living nearby; the work asks more of a person’s brain than farming.  This evolutionary trend was exacerbated by the fact that people’s diets became way worse when they began to farm.  Instead of getting nutrition from a wide variety of different plants and animals, a farmer might eat meals consisting mostly of a single type of grain. 

There’s nothing we can do now about these evolutionary trends.  Dogs and farming swayed our ancestors’ evolution toward smaller brains, but it’s not as though you can get those neurons back by deciding to take up hunting, or never living with a pet.

But, honestly, our brains are so plastic that our genetic heritage matters less than how we choose to spend our time.  By nature, neither gorillas nor parrots will speak human language.  But individuals from both these species have been able to learn to communicate with us after we taught them.

Nobody is born with an innate understanding of mythology, religion, science, or mathematics.  None of that can be encoded in your genes.  If you want to understand this stuff, you’ll have to make an effort to learn it.

Neuron count only suggests a brain’s potential.  You could do incredible things with a low number – consider, by ways of analogy, the feats that 1960s NASA accomplished using computers much smaller than a contemporary telephone.  And, conversely, sensory deprivation will make it much harder to get things done, no matter what your innate potential.

That’s why I volunteer with Pages to Prisoners.  Our brains are capable of wonders.  At any age, we can learn and grow.  And yet, we lock people into prisons that seem designed to make them worse.

On smell (again!).

On smell (again!).

1200px-Concentrated_animal_feeding_operation,_Missouri_(2)If you live next to a concentrated animal feeding operation – facilities that houses thousands of farmed animals in fetid conditions – there’s no point in buying perfume.  The smell of animal excrement overwhelms any scent you could wear.  If you’re interested in a romantic dalliance, you’ll have to woo people with your looks.  Or, sure, conversation.  But a charming scent won’t do it.

In other environs, scent contributes to your allure.  We humans choose our mates based on a huge number of considerations, including the way people smell.  Back in 1995, zoologist Claus Wedekind proposed that human females are most attracted to the scents of men whose immune genes differ from their own.

oldspiceDuring college, a friend tried to convince me that the best route to romantic success was Old Spice aftershave.  “It reminds women of their fathers,” he said.  This is, of course, the opposite theory from Wedekind’s – that females would seek out partners whose scents mirror their own genetic lineage.

But this much is uncontested – by overwhelming our sense of smell, air pollution makes humans less sexy.

Stick_insect_WGWe’re not the only animals who use aroma to identify attractive mates.  Stick insects can have a wide range of physical appearances, and multiple species sometimes live in overlapping areas.  Each subpopulation of stick insects secretes a different mix of oily aromatic chemicals from their skin.  These oils protect them from scrapes and dehydration – and help them find mates of their own kind.

If stick insects couldn’t smell, they might mate wantonly.

That’s what happens with fish.

When we pollute water, fish lose the ability to recognize each other.  In the same way that humans near a CAFO won’t notice each other’s scents because they can only smell ammonia and sulfurous shit, fish living near human dumping grounds – whether it be farm run-off, factory effluents, or untreated sewage – find their sense of smell overwhelmed.

fishMany types of fish behave the way my Old-Spice-sporting friend hoped humans would – they seek mates who smell like their forebears.  Which they can’t necessarily do in polluted waters.  And so fish mate across species.  Their chimeric children dissolve the old boundary lines.

Perhaps you thought this couldn’t happen – the traditional definition of a “species” is a population of organisms that can produce fertile offspring only by mating with each other.  But the traditional definition is wrong; scientists don’t actually know what a species is.  Whatever boundaries exist seem porous.  The Neanderthal genes carried by modern Homo sapiens show that humans also mated with other species, at least until we drove our relatives into extinction.  Chimpanzees are the closest we have left, sharing 98% of our DNA, but now they’re endangered too.

Although – maybe that’s fine.  Not murdering our relations, or endangering the chimps; maybe it’s fine for multiple lineages to merge back into one.  I hate to find any virtue in pollution, but dissolving species boundaries doesn’t sound so bad.

Contemporary biology textbooks claim that species boundaries arise whenever subpopulations cease interbreeding.  For the “Advanced Placement” biology test, students are expected to know that speciation can be triggered by migration, or a geographic impediment like a new highway, or even cultural barriers.

A strong preference for certain types of scent might qualify as a cultural barrier.  Or tropical birds that want their mates to look or dance a certain way.  And so would anti-miscegenation laws in the United States.  Except for the gene flow provided by pale-skinned rapists, those biology textbooks imply that epidermal melanin concentrations marked a species boundary until the 1960s in the United States.

In the contemporary U.S., parental wealth creates a similar mating barrier.  In many parts of the country, children born to rich, well-educated parents rarely even chat with children born to poor people, let alone marry them.  This phenomenon has persisted for only a generation or two, which is certainly too brief to create a species division, but shows no sign of abating.

Marrying somebody who shares your interests seems fine.  My spouse and I seem to be fairly similar people.  And yet – should I be alarmed that my own choice inches us closer toward the world of Metropolis?


Feature image: “Character study, strong smell” by Franz Xaver Messerschmidt.